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PREFACE

The work to be desc_ribed herein constitutes the final report on
NASA Contract NAS7-712 entitled: "Unsymmetrical Large Deflections
of Expulsion Devices." The purpose of this effort was to 1) provide a
qualitative assessment of various bladder-type propellant expulsion
devices of current design and 2) to indicate the proper course for future
studies leading to an improvement of the fatigue life and efficiency of
such devices.

The text of this report is divided into four ckapters. The basic
problem definition, evaluafion of current solution methods, conclusions
and recommendations are included in Chapter I which is primarily
descriptive. Detailed analytical calculation, deemed inecessary to
support many of the statements in Chapter 1, are included in Chapter I
through IV.

"As a program-management aid, a flow chart describing the major
research phases considered under the present contract, as well as ‘

recommended future research, is included as Fig. P.1.
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CHAPTER 1
' GENERAL DISCUSSION AND RECOMMENDA TIONS

1.1 Discussion of the State-of-the-Art

The problem of designing a bladder expulsion device

‘may be stated as follows: to maximize the "efficiency" of fhe
device subject to such constraints as a required fatigue or
cycle life, chemical inertness to the propellant, permeability
of the bladder to the propellanf and pressurant, storability
under service conditions, and stability under flight and launch
environments. The present study focuses attention on the
structural aspects of this design problem, nameiy the fatigue
or cycle life of Ibladder expulsion deﬁqes.

i An accurate assessment of the cycle life of a bladder

| , | depends, in turn, upon the accuracy of the calculated strains

" and stresses of the bladder at each material _point. The pre-

diction of the topology of a collapsing bladder, however, con-

stitutes one of the most difficult problems in Applied Mechanics.

Therefore, let 4us review briefly what can be expected in terms

of a dependable analysis of bladder deformation.

1.1.1 Analysis of Single Folds

3

The analysis of single folds is certainly within the pre-
sent state-of-the-art. Both analytical and numerical approaches
are applicable to certain classes of problems. In this connection

the results obtained by Rocketdyne [1] are representative of the
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stra;.ins and stresses due to an initial single folding. For a
complete analysis of a single fold, one must consider:
a) folding, b) unfolding, c) pure bi-axial extension, and finally
d) refolding. Analytical study of sucha defermation-cycle
is certainly possible and should be undertaken. Such a study
musé include the strain hardening phenomenon for metallic
bladders. ‘The analysis presented by Rocketdyne (1], while
relevant and useful, involves only the initial folding part of
the complete deformation-cycle mentioned above.

To be of practical relevance, such a theoretical study
should be accOr;lpa.nied by appropriate experiments on flat
sheets, consisting of the proposed bladder materials, subject

to the above mentioned deformation-cycles.
1.1.2 Double Folds and Pointing
It appéars that ali bladder deformationé can be clas-
*
sified into a) single folds, b) multi-legged folds without peointing,

c) multi-legged folds with pointing (this will be referred to as

"pointing"), and d) double folds. While, in a collapsing bladder,

This refers to the case of two or more single folds inter- .2
secting at a point. ’
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the first two types of folds occur by necessity, the occurrence
of the last two types should be minimized by a judicious design.
The analysis of the double fold and/or pointing represents
a problem of enormous proportions. The complications arise
from a number of sources. First, since plasfic deformations
generally accompany pointing and double folding in metallic
bladders, the strains in the material at any instant are functions
of the previous strain history as well as the given load, Sécond.
the topology of a nonsymimetrically collapsing bladder depends,
to a large extent, on small irregularities in the initial (unloaded)
geometry of the bladder. Since such irregularities are random
in character--especially after the first cycle of deformation has
taken place--the position or history of a given point or double
fold may, for all practical purposes, be indeterminable., Third,

double folding is usually accompanied by an instability or dramatic

wrinkling of the inner surface of the fold, the result of which is

an effective inner radius which may be of a much smaller order
than the thickness of the bladder. In this respect the problem

is a three-dimensional one, i.e., conventional shell theory is
not applicable to regions in the vicinity of the fold. The magni-
tude of the problem can be better appreciated by recalling that the

buckling and post buckling behavior of such a seemingly simple




geometry as a circular cylindrical shell dates back to Fairk .vnes
(1850), yet today the post buckling behavior of a cylinder cannot
be adequately prédicted [2].

In view of the foregoing difficulties, t should be absolutely
clear that any expectation of a rigorous analysis of the nonsymmetric
deformation of a collapsing bladder, with pointing and/or double
folds, by either analytical or numerical means is entirely unrealistic.

 In passing, it shruld be noted that the isomeiric mappings
of the ASTRO Research Corporation [3] and Rocketdyne [1] appeaf
quite useless in terms of both qualitative and gquantitative information,
since the equaéions governing isometric mappings of most bladder

geometries are nonlinezr and do not admit unigue solutions! Moreover,

the double fold analysis presented in [1] is not reliable in view of the
many ad-hoc assumptions and approximations upon which it is based,
and also the dukious fatigue data that is employed.

Finally, since a rigorous analysis of double folds does not
appear to be within the state-of-the-art, recourse must be made to
exp;rimental investigations of this phenomena. fhere are relatively
ea;y and inexpensive tests whicﬁ may be superior and more informative
. than ad-hoc theories. One such test may be described as follows: a
flat sheet of the proposed bladder material (e.g., laminated polymer-

metal composite) is subjected to a) a single fold, b) a double fold,

c,)‘ unfolding, and d) bi-axial extension. The folding process and the




radii of the folds may be controlled by the use of rigid cylinders
upon which sheets of each specimen are folded. The objective of
such tests would be a design which involves minimum plastic de-

formacion due to folding of the metallic part of the composite.




1.2 Design ?hilosoyh)}

The topology of a collapsing bladaér is such that, even
under seemingly idealistic conditions of geometry and environ-
ment, one cannot, in general, obtain a design which is completely
void of double folds and/or pointing. One must thefefore accept
the consequences of their occurrence. In view of the inability
to 'accurately predict stresses and strains at double folds, how-
ever, it‘is clear that one should design to minimize their occur-
rence and/or their u;udesira‘ole effects. In the subsequent sections,
the latter point is discussed with respect to the selection of bladder

materials and geometry.
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1.3 Classification of Expulsion Devices According to Materials

1.3.1 Homogeneous Materials

i.3.1.1 Metals: In view o_f the permeability problem, it
is natural to select metals as bladder materials. The consequence
of double folds and/or pointing, however, are extremely serious
with respect to all metals, due to the large strains experienced
and the extremely low fatigue life of metals under such large
;trains. Further, the occurrence of double folds and/or pointing
is maximized with respect to a homogeneous metal. The use of

a homogeneous metallic bladder is therefore not recommended.

1.3.1.2 Non-metals: Some non-metals may be ideal
with respect to fatigue life under the large strains induced by
folding or pointing. As examples we note Teflon and Kel-F.
The Teflon produced by E. 1. du Pont de Nemours & Company
(tetrafluro ethylene) has a tensile strength up to 3,500 psi, elong-
ation of 250 to 350%, melting point 594°F, and is highly chemical-
rosistant. Kel-F, of the Minnesota Mining and Manufacturing
Company (trifluorochloro ethylene), has a tensile strength of 5,000

psi, and is also highly chemical-resistant. Some rubbers, on the

other hand, may be applicable. For exarriple, fluorocarbon rubber

&7
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(this is a saturated fluorocarbon polymer containing 50% fluorine

and is produced by the Minnesota Mining and Manufacturing Company}
has a tensile strength of 3,000 psi, elongation of 6007, is heat re-
sistant to 400°F, and is highly chemical resistant. Unfortunately,
permeability can be a problem with respect to homogeneous non=-
metals. In this connection homogeneous materials do not appear
suitable unless the permeability of such polymers as Teflon can be
either tolerated or improved. Also, it should be noted that the mech-

anical properties of many non-metals are highly temperature-dependent,

1.3.2 Composite Materials

Composite materials consisting of suitable metals and
polymers or elastomers appear to ‘offer a possible solution to
the bladder material problem. Assuming the manufacturing pro-
cesses can be worked out, one particular promising candidate
consists of two layers of a polymer or elastomer bonded to a
very thin inner layer of metal. Here the metallic layer lies on
the neutral axis of the composite, thus minimizing the strains due

to folding or pointing deformations. The metallic inner layer

_serves a dual purpose: first, it reduces permeability, and second,

it adds effective tensile strength to the bladder in resisting pure
membrane-type stress. The non-metal, on the other hand, absorbs

the large strains off the neutral axis. It should be noted that, in

10




a composite, a non-metal portion of sufficient thicknesses and
flexibility should 1) reduce th.e occurrenc-e of double folds, and
2) reduce the magnitude of the maximum curvatures experienced
at double folds. The latter leads to a reduced strain in the metal
and hence to a longer fatigue life of the bladder.

One compOsité which can be manufactured consists of a
laminated étructure (in the following sequence) of ~ 1 X 10'Z in,
TFE (tetra fluro ethylene), = .5 - 1 x 10-Z in. FEP (fluorinated -
ethylene-propylene), ~ 1 ~ 2 x 10°2 aluminum foil, and
~1x 10-2 in. FEP. An optimum design would be to add another layer
of TFE into the FEP, however, in view of the necessary curing se-
quence and the degradation of FEP at the temperatures required to
process TFE, this may prove to be a formidable manufacturing
task. Means of constructing "oPtin}a‘.{"ﬂ c:_:?.r'r‘xp'o_s_i_tﬁ‘s~ should be seri-
ously explored.

An important additional feature of the foregoing comp‘os.ite

should be carefully noted. Following a single fold, a sandwich-type

structure develops that has a very high bending resistance in com-

parison with that of the unfolded portion of the bladder and thus is

partially ""double fold-proof." For example, consider a composite

consisting of two layers of polymer, each of thickness h and

modulus E’ , bonded to a central layer of metal of thickness t and

1l




elastic modulus E . If one assumes that t/h is small (e.g.,
t/h < 10',l ), the bending stiffness per unit length of a sheet of

this composite is approximately equal to

E‘'I, =2 E' D

(Pcisson's effect is neglected). On the other hand, the bending

stiffness per unit length of the same cémposite, now once folded,
" is approximately equal to
2

. ? -

W

£'n’ t8+(%)(%)1, :

Hence,' the ratio of the bending stiffnesses of a singly folded
and an unfolded sheet is

’

=

L

E'1L

E .t
r= =8 +3 () :
g’ B

1

For typical composites, it can be expected that the second term
on the right-hand side of the above relation will be of the same

order as, or much greater than the first term.

1.3.3 Rib or Ring Stiffenners

Partial deformaticn control can be achieved 'with rib- or
ring-type stiffenneré. For example, as has been found in previous

JPL tests, nearly axisymmetric deformation of spherical-type

12




bladders can be attained over a limited range of deflections by a
proper choice of reinforcing rings {further remarks will be made
regarding this example in Section1.4. 1.1). It should be noted, how-
ever, that whereas a suitable rib-reinforcement may minimize the
occurrence of double folds and pointing, it will not appreciably
affect the stress-state at a double fold. Folding and pointing are
local phenomena, .i. e., they may occur between the reinforcing
ribs. i—Ience, a design which is based solely upon rib-reinforce-
ment for completelf preventing folding and pointing may not be v
reliable. It appears that the optimum bladder material, both
from the structural and permeability points of view, may be a

rib-reinforced composite of metal and polymer or elastomer.

13
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1.4 Classification of Expulsion Devices According to Expulsion Mode

and Geometry

Expulsion modes may be classified as force-controlled,
displacement-controlled, and a combination of force and dis-
placement-controlled. The advantages and the disadvantages of

the first two classes are briefly discussed.below.
1.4.1 Force-Controlled Expulsion Bladders

Here the deformation is governed by the material com-
p.osition, geometry, and a judicious use of rib-reinforcements.
A common device of this type is the hemispherical bladder.
Since much attention has been devoted to this geometry in the
past (e.g., the Rocketdyne report [1] and numerous JPL
laboratory tests), let us consider this exampie in more detail.

The Spherical Bladder -- What's Wrong With it.

How can it be Improved? As an illustration, let us consider

the gold-reinforced spherical bladder shown in Figs.l.1l. Figure l.la
‘shows that the collapse pattern of such a device, within

limits, be constrained to an axisymmetric state. Hence, up to

the instant that the Fig. 1.1a photograph was £aken, double folds

and points were largely non-existent. Notice also that the in-
verted part of the shell (Fig.l.la) constitutes a shallow spherical

cap. In Fig.l.1b the deformation has progressed somewhat further.

14




Small but definite asymmetric deformations can now be observed
around the ridge of the inverted part of the structure. Notice
that the undeformed section cf the shell now resembles 2 cylinder
whose characteristic buckled pattern (with or without reinforcing
ribs) is diamond-like, involving considerable pointing. This
pattern is seen to develop in Figs'.l.'lc, d. Figures l.lé, {f illustrate
the remaining portion of the collapse-cycle. Figure 1.]:g shows
the beginning of the inflation-cycle. Notice now the very irregular
geometry, i.e., the many large and small imp:rfections. Figure 1.' 1h
indicates that folding and pointing are numerous at the beginning
of the second cycle due to the imperfections. Figures 1.1i,k show
T the collapsing part of the second cycle. -

) What's wrong with this design? In terms of the geometry,
the flaw in the design may be explained as follows: even with rib-
reinforcements, one may expect axisymmetric deformations only
as long as the undeformed portion of the shell is reasonably shallow.

In other words, had the shall been cut and supported along the ridge

shown in Fig.l.1b, the test quite probably would have be(;r;a‘svuccess.
at leasi: for the first few cycles. A proper design, however, would
be 2 spherical cap of optimum depth, or a modified épheri?:ail cap as
illustrated in Fig.l. 2, consisting of a rib-reinforced composite of
metal and polymer or elastomer. The selection of the optimum geo-

- metry, depth of the shell, spacing of the rib-reinforcements, and

15




finally the composite material and design constitutes a problem
which should be carefully studied. The ty.pe of composite that

one should use clearly dcpends on the geomeiry as well as thé
expulsion-mode of the bladder. For example if a hemispherical
bladder is to be completely inverted, litile advantage is gained

by employing a composite that consists of a layer of metal placed
on one side of a layer of polymer or elastomer; clearly enough,

the composite should not consist of two metal layers placed one

on each side of a polymer iayer. ‘In this example, a metal layer
placed at the neutral axis, i.e., between two layers of polymers,
appears to be a suitable design, although it may present 2 formi-
dable manufacturing task. Hence, it appears that, with a‘judicious
choice of the bladder geometry, composfte material, and rib-
reinforcements, a ''highly double-fold-resistant" bladder may very

well be a realistic design objective.

1. 4.2, Displacefnent-Controlled Expulsion Bladder

Current thinking, in this connection centers around a
displacement- contrqlled device which utilizes the concept of 2
piston-type collapsiﬁg process which may be. employed in con-
junction with a rib-reinforced torus, or rib-reinforced deep
spherical c.ap. The basic idea may be described in connection

with the latter gedmetry (spherical cap) as follows: The spheri-’

16
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cal cap is collapsed by means of a relatively rigid indentor of
a suitable profile (for examble, paraboliz). The deformation
begins at the apex of the shell, where the indentor first comes in
contact with the bladder, Fig. 1.3. Subject to a distributed com-
pressive force applied at the vicinity of the shell's apex, only
a lolcal buckling, in the form of a symmetric dimple, initiates
at the apex and progresses to the other parts of the shell. By
a suita:ole spacing of rib-reinforcements, and judicious choice
of composite material, one may affect a deformation-controlled
device which rnay quite possibly be void of double folds. 1In this
case, the composite material mentioned at the end of Section1. 4.1
may prove to be a good design. However, the usefulness of any
device of this kind should be established experimentally.

A basic disadvantage of these kinds of expulsion devices is

the additional weight that is required for the supporting equipment.

Y
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1.5 A Promising Design - Analytical Considerations
It is evident that an optimal bladder design is one for which
o minimize the occurrence of double

1) the bladder geometry is selected t
folding or pointing and 2) the material is selected to minimize the
Regarding

) be designed such that, under

adverse effects of double folding or pointing should they occur.
is the following: can ai axisymmetric
crmation.

jtem 1), an important guestion

bladder or diaphram (shell of revolution
effective external pressure, it undergoes only axisymmetric def
would be void if double folds

By definition, such a mode of deformation
and pointing. It is clear thata device of this type must be rib- reinforced,
and further that the ribs must be rings having the axis of symmetry of the
d bladder necessitates a

shell as their common axis.

The proper design of the above mentione
e designed to rolve the iollowing problem: predict 1) a
2) a spacirg and

numerical cod
shape of the meridional midsurface of the sle'l,
jon of the rings, 3)a shell thickness distribution and
comprising the

stiffness distribut

4) the material properties (structural) of the composite

shell, such that the shell would deform symmetrically and sequentially
n accomplished,

In’addition, once 1) through 4) have bee
t be capable of 5) predicting the strain history of
ssessment

from ring to ring.

the numerical code mus
the subsequent single folds with sufficient accuracy thatan a

of fatigue or cycle life could be made.

18




The construction of a numerical code to provide the information
discissed above is indeed a difficult task, and the following questions
immediately arise: 1) is the construction of such a code within the present
state-of-ihe-art? ; 2) if yes, what analytical and numerical procedures
should b~ followed? In an effort to provide sound judgements concerning
the ansver to questions 1), 2) above, it was found necessary to embark
upon an cxploratory analytical/numerical research program which was,
however, outside the original scope of the present task. This research
included . 1) the analysis of nonlinear axisymmetric deformation of shells
of revolution, and the. stability of this state with respect to nonaxisymme-
tric perturbation; 2) the analysis of single folds in~corﬁposite polymer-
metallic sandwich-type materials; and 3) the derivation of differential
equations for rib-reinforcements. The details of there investigations
can be found in chapters II, III, and IV. Below we present our findings

within the context of the posed problem.

1.5.1 General Analytical Sequence

A seemingly tractable analytical sequence for the construction of

"the above code is as follows:

(1) A suitable nonlinear shell theory is first selected to represent
the bladder in the unbuckled (symmetric) state and states adjacent to this.
External pressure is applied and the axisymmetric deformation of the

baldder is obtained.

19




(2) The foregoing axisymmetric deformation is now given a general
axisymmetric and non-axisymmetric perturbation and the equations
governing these perturbations are derived .fi'om the original nonlinear
shell equations. The static stability of the perturbation equations are
then investigated.

Let the rings be numbered sequentially from the apex of the shell
to the base, Let that section of the shell between the apex and the first
ring be denoted as #1, that between the first and second rings as #2, etc.
Then, according to the results of the eigen-value problem stated in item
(1) above, one of the following events may take place: a) no buckling
(symmetric or antisymmetric), b) global or local antisymmetric bifurca-
tion, c) symmetric snap of a section other than #1, d) symmetric snap of
section #1 only. If a) occurs, the load is increased until one of a} |
through c¢) occur. If b) occurs, the rings must be stiffened and/or closed
up until no.antisymmetric deformation takes pléce. If c¢) occurs a more
rapid increase in ring-stiffness from section #1 up must be tried. Finally,
by trial and error (preferably employing computer graphics), adjustments

are made until section #1 buckles {snaps) first in an axisymmetric mode.

(3) Once section #1 snaps symmetrically, the resulting shell car; be
treated as a new shell. This new shell can be envisioned as a shell with
a hole in place of section #l. The forces and moments at the edge of the
hole then represent the action of section #1 (the snapped portion of the -

shell) upon the re;maining part of the shell. These resultant forces and

20




moments must be calculated as a part of the problem.

(4) Single-fold strains due to axisymmetric snap-thru, and the
corresponding resultant forces and moments are calculated.

(5) The prebuckled axisymmetric stresses and deformatio:n of the
new shell are now determined. This state is perturbed, and the stability
of the perturbation equations are investigated. Again, the associated
eigen-value problem will determine the buckling mode of the shell. The
remaining ribs are adjusted until the #2 section snaps symmetrically at
a load higher than. that associated with the buckling of the #1 section, but
lower than that required for either antisyfnmetric buckling or the
axisymmetric snapping of any other section.

(6) The above proces's is repeated for the remaining sections of the.
a'hel_l.

(7) Single fold strains (due to axisymmetric snap- thru) are now

determined and correlated with cycle life.

21
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1,5.2 Numerical Details

Let us now discuss the details of constructing a numerical code
to accomplish the objectives listed above. ’This task can be divided into
the following basic areas: a) mathernatical description of the bladder,
b) numerical analysis of the axisymmetric state, c) stability analysis of
the axisymmetric state, and d) detailed analysis of the strain due to
single folds.

Item aj can be adequately accomplished in several ways. One
method can be described as follows: Every axisymmetric bladder will
consist of a shallow region near thé apex, and a deep-shell region adjacent
to this. That portion of the bladder in the vicinity of the apex can be
represented by a nonlinear shallow-shell theory (e.g., Marguerer's

i equation). In the remaining part of the shell conical segments between

ribs should serve as an adequate approximate ‘model. The behavior of
the shell in these two regions will, of course, be markedly different. In

the shallow zone bending effects will be distributed throughout the entire

domain; on the other hand, in the deep zone bending will be confined to
edge or boundary layers adjacent to ribs. This suggests, therefore, a
boundary layer analys‘is whereby that portion of the shell immediately
adjacent to a rib is described by an appropriate single fold analysis, and
that portion outside by a membrane theory, with proper matching of the
two solutions.

Consider now items b) and c¢). Based upon the discussion under
a) above, this task may be decomposed into an analysis of rib-reinforced

shallow shell of revolution, an analysis of the boundary or single fold

22




region, and a determination of the membrane state in the deep-shell
region with a matching to the edge la;rer. The first two items hate been
rathur extensively investigated in tﬁe course of this study in order to
determine whether or not they are within the current state-of-the-art.
Based upon a study of rib-reinforce_d.shallow spherical caps, the
details of which can be found in chaptlers II and IV, the response and

stability of the shallow zone of a bladder can, it would appear, be ade-

quately treated by the finite-difference method of N. C. Huang [4].

Here many meshpoints can be employed for accuracy, yet a relatively

small computer core is necessary. A detailed program description

covering the rib-reinforced shallow spherical cap can be found on
page 46. Regarding the stability portion of this program, it would
appear the technigue could be extended to cover fhe entire bladder, once
pre-budkled bladder deformation is known.

In contrast to the shallow-shell analysis, a finite-difference approach
to the single-fold problem was found in Chapter III, to require a very
large computer core. A description of this study and a recommended course
of action will now be presented.

For a composite consisting of a thin layer of metal placed between
two layers of elastomer, and undergoing folding, a good estimate of the

state of stress is obtained if we use the following procedures: a) find the

stress fields in the inner and outer layers of elastomer using large

deformation theory of elasticity and treating the thin layer of metal as an
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inextensible central sheet; b) under tlie bond stresses transmitted to the
middle metal sheet by the elastomer, and using a plasticity theory,
find the stress and strain fields in the metal layer. The assumption that
the middle metal layer, in comparison with'the elastomer, is inextensible
can be justified on the grounds that the stx.'ains in the elastomer is by far
larger than those in the metal, even when the metal undergoes plastic
deformations. Moreover, such an assumption would yield a more
conservative estimate of the stress-state in the elastomer as well as the
bond stresses hetween the elastomer and rhetal, and hence is in the safe
side. Since under a repeated loading of the type encountered in expulsion
bladders, either the bond between metal and elastomer may be broken or
the metal layer may fail under a cyclic plastic deformations, the -analysis
provides information for design against such failures.

In a single-fold, the state of deformation is plane with finite rotations
as well as strains. Thus a plane-strain formulation for large rotations
and strains is required. This is done in Chapter III. Because of the non-

linear character of the field equations, however, their integration can be

affected only numerically, using a step-by-step incremental loading. At a
given step, on the other hand, one may employ: a) a finite difference scheme
or b) a variational approach together with a finite-element scheme. In

Chapter III, a) is fully developed, and b) is briefly discussed. Here we

point out that while there exists a number of finite-element methods for
solution of structural problems at large deflections (see Marcal [5 ] for a

literature survey), these methods are not applicable to the bladder problem
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which involves deformations with large strains of non-metalic materials.f

A complete formulation of plane-strain problems for general elastic

materials which possess a strain-energy function, and which are isotropic
in their undeformed (virgin) state is presented in Chapter III. For an
incremental solution, the results are developed for small deformations
superimposed on initially large deformations. A lagrangian formulation
is uséd, and the field quantities are expressed in terms of the particle
positions in the initial undeformed configuration. However, explicit
expressions and transformation-equations are given for describing these
field quantities in terms of the particle positions in the deformed state,
i.e., Eulerian formulation. The resulting system of linear, partial
differential equations and the corresponding boundary conditions are then

expressed in a finite-difference form, using a central difference scheme

and incorporating the correéponding difference-corrections. The correc-
tion terms are given explicitly, an& may then be included by means of the
matrix multiplications, yielding very accufate results.

' While the finite-difference method developed in Chapter III may be

used effectively to obtain the states of stress and strain in the elastomer

part of the composite, the incorporation of various mixed boundary

conditions may involve some difficulties. In this regard a correct and

consistent finite-element approaching may prove more useful and more /

effective. Such a method must be based on a2 minimum principle, and v

For example, the latest and most advanced finite-element formulation by
Felippa[6], that considers large deflections, ignores terms of the same
order of magnitude as those included, and uses a constitutive law which,
at best, can be appiied to metals in the elastic range and at infinitesimal
strains, see Chapter III for further discussion.
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must include an assessment of stability and uniquencss of the solution

at each increment of loading. These are briefly discussed in Section 5

of Chapter III where a complete and correct minimum principle is stated
and the question of stability is discussed. This principle permits a
correct formulation of a finite-element s::heme for the incremental solu-
tion of folding which involves finite rotations and strains of elastomers
with various constitutive relations. These formulations are not presented
in this report, since it would have taken us far beyond the scope of the
work. However, it is strongly recommended that such a stﬁdy be further
pursued.

To complete the study of single-folding of a metal-elastomer
composite, an estimate of the plastic deformations of the metal sheet is
also needed. While it is desirable to have a program which provides the
stress and strain fields in both elastomer and metal layers simgltanepusly,
in this study we have been contented with a conservative engineering
estimate of plastic strains in the metal sheet. This is done by using the
known state of stress in the elastomer, and assuming a linear variation
of the stress-components across the thickness of the metal sheét. The
corresponding plastic strain-increments are then given using Mises' yield

condition.
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1.6 Sumraary and Recommendations

1) It appears that bladder deformation can be classified as
a) single folds, b) multi-legged folds without pointing, e) multi-legged
folds with pointing, and d) double folds,

2) The analysis of single folds is within the present state-of-the-
art and should be carried out in connection with the following deformation
cycle: a) folding, b) unfolding, c) pure bi-axial extension and finally,

d) re-folding.

3) The analysis of double folds and pointing appears not to be
within the present state-of-the-art.‘ Hence, experimental inveétigations_
of double folds should be undertaken. Early tests need not be conducted
on complete blacders. In the interests of economy one may employ flat
sheets of the proposed bladder material. These expe;iments should
include the following deformation cycle: a) siﬁgle folding, b) double
folding, c) unfolding, and d) bi-axial extension.

4) 'fhe objective of the analyses and experiments mentioned
above is a design which minimizesthe undesirable effects of double
folds and poihting.

5) The use of a homogeneous metallic bladder is not recommended
because of the low fatigie life of metals under large strains.

6) The use of homogeneous non-metal bladders is not recommended
because of their excessive permeability.

7) An optimum bladder material appears to be a layer of metal

sandwiched between two layers of non-metal (polym er or elastomer).




8) The optimum bladéer gecmetry appears to be a rib-reinforced
shell of revolution.

9) The proper design of the bladdei necessiiates a numerical
code which is capable of predicting: a)a shape of the meridianal
midsurface of the shell, b) a spacing and stiffness distribution of the
rings, c) a shell thickness distribution, and d) the material properties
(structur;xl ) of the composite comprising the shell, such that the shell
wauld deform symmefrically and sequentially from ring to ring. In
addition, once 2) through c¢) have been accomplished, the code must
be capable of: d) predicting the strain history of the subsequent single
folds with sufficient accuracy that an assessment of fatigue or cycle
life could be made.

10) The construction of such a numerical code is within the |
present state-of-the-art.

11) It has been found that the conventional finite difference method
for the solution of the single fold problem, while tractable, may not
constitute the most efficierit solution-technique. Further research
(outside the present contract) has conclusively shown that the problem
can be more advantageously approached by a finite-element scheme
- which utilizes the concept of small deformation superimposed upon large,

and employs in each incremental loading an absolute minimum principle.
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12) While a finite-difference scheme is both tractable and
efficient for the stability portion of the foregoing code, it appears that
a more uniform and flexible method would be to formulate the shell

stability analysis in finite element form as well.
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CHAPTER II

BLADDER DEFORMATION AND STABILITY

2.1 Introduction

As was noted in Chapter I, our basic design philosophy
is to eliminate (or at least minimize) double folding and pointing
tarough deformation control. For bladders that are shells of
revolution, one promising method of obtaining deformation controln
is by a judicious choice of ring réinforcements (ribs). The most
elementary problem of this type can be posed as follows: _gi§en

a bladder (geohetrf and material properties), find a distribution

of ring stiffness and spacing (along the shell meridian) that

constrains the deformation field to be axisymmetric and sequential

(ring to ring from vertex to bottom) under external pressure

A(expulsion), and similarly during re-cycle. A much more ambitious

problem might be posed as follows: £for a given fatigue (cycle)

life, and external and expulsion volumes, find shell and ring

.

_geometries and material properties, and ring spacing, such that

a) the dgformation is axisymmetric and b) the weight of the
structure is minimized. '

Alnecessary first step in the solution of design problems
of the above mentioned type is the construction of numerical
programs.to predict: a) nonlinear axisymmetric deformation of
ring-reinforced shells of revolution under external pressure,

and b) the stability of this diéplacement field with respect to
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non-axisyﬁmetric perturbations. For deep shells with arbitrary

meridia“ﬁi"’sha'p‘e, this is indeed a difficult task.

—

As a beglnnlng, and in the spirit of an exploratory

investigatlon, let us restrict the following discussion to the
more eleﬂenie;y case of an elastic shallow ring-reinforced
spﬁerlcal-cap. The objective of the analysis shall be to
construct a numerical scheme to predict the axisymmetric deforma=
tlon of the shell, when subjected fo external pressure, and the
stabllzty of thls ax1symmetr1c state with respect to

non-axzsymmetrlc perturbatlons. ’. -




2.2 Axisymmetric Deformation of Ring-Reinforced Spherical Caps

'2.2.1 Basic Equations.

The axisymmetrical deformation of an unrelnforced elastic

shallow spherical shell is governed by the following two nonlinear

'differential equations [1]

xo*7) " - 2° 4+ xo* = —2px? + B*e* , (2.1a)
(xe+)” -2 - xer = Les2 ¢ (2.10)

where x, 6*, %*, p are, respectively, tae nondimensional radial

coordinate, rotation, stress function and load parameter as given

by N. C. Huang in [1], and (77 4 »/dx. For an unreinforced

shell, Equatlons (2.1) hold for the entire shell. For reinforced
shells, quatlons (2.1) are valid in the region between rlngs,
but certain continuity and jump conditions must now be 1mposed
across each ring. |

Consider, for example, é ring located at x = Xo-
Let us assume the ring can be represeﬁted asméh eléstié”géace
curve with bending and torsinal stiffnesses. Then, the require-
ment that the slope and the horizontal displacement of the
deformed shell be continuous across x = x, yields |

o* (xg) = 0% (x57)4 (2.2a)

07 ) <y 00 - o lugh) - § ot (koM (2.2b)

In addition, a consideration of the relation between the radial

displa ement of the ring and the normal pressure reveals that
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Ny (rh) - N, (z3) = ‘—i-f‘;gr ulry) (2.3)

-~

where Np is the radial membrane stress in the shell, u is the radial

¢isplacement, and (AE), is the exten51onal stiffness of the ring.

Equation (2.3), which 1mp11es that a dlscontlnulty in N may exist
across a ring, was obtained by use of the second of Equations

(4.70), Chapter IV. . _ e e

Similarly, if we cons;der the relatlon between the

dlstrlbuted twlstlng moment on the ring (due to rlng-shell

.ém;eraction)_and ring twist, we obtain a  further Jumg_eondltion

-~ = - - (EI
Pz o= Mg (r°+) - M. ir"o )y = = : 2)1‘%!;- (ro) ' (2.4)

.0

"
0y
]
m
¥

where ﬁr-is the radial component of bending moment, w is the

downward dlsplacement of the shell, and (EI), is the out-o f-plane
bemélnéimiélo;ty of the rlng. Equation (2.4) was obtalned by use
of the fourth of Equatlons (4.70) , Chapter 1V. ' o S

As expressed in terms of the dimensionless quantlties

of [1], Equations (2.3), (2.4) become

- - . . -

.- o* (x t) - 0% (xD) = clo* (x,) - N e*(x )] » - LXZ.gai
_ o (¢) 0 X °
: » o e
- ® x®” .
. S0 xgh) - B (x) = Boerix)) v (2.5b)
s L L. %o .
where .
A(AE) ¢ b A(EL) (2.6)
tak ' «D ,
cLTTTo. TLZ. 2 I Tl LE . 247, 2 FEo0
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) 1/4
A= 2[3(1-v9)] 7 wet?,

el D = £t3 /12(1-v?) .
Here, H denotes'the rise of the shell, and t, a, E, v are the shell
thickness, base radius, Young's modulus, and Poisson's ratio,

respectlvely.

Finally, in addition to Equatlon (2.1) whlch govern the

shell between rlngs, and the contlnulty ‘and jump conditions (2.5)

across any. glven rlng, we must spec1fy boundary condltlons at the
shell base. Let us assume that the bladder is fixed at the base;

then the following boundary conditions must be satisfied at the

- -

boundary x =.i. — -—
- e =0,

c. = :.;-: *” _'\) * ..-. o cL . ’
< oL et -y e . | | 2.7)

'2.2.2 Solution Method.
For a given p, the guantities €*, ¢* can be determined
numerically. To begin, let us define

z wt §-=-2F_'x + 6*4.?_* A

T ;rr:':::~ sioz :;9'=7§l(2)6f?;.ﬂ3r' :“:-'f';a . (2.8)

and select a finite difference mesh along x with increment h. If

we set - = ... .o - .

cmiree X=X S (i-1)h , 8;* = a*ﬁxil .
T £ o 8% (xy) fi = f(xi) 4
szmaiyi maziz-zzina iifiazSg —;quil.r <. zz=roiitita - (2.9)

where i is an arbitrary positive integer, and if we employ

central difference formulae to approximate first and second
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derivatives with respect to x, Equations (2.1) can be written in

matrix form as

Aj Yi47 * Bi Yy + Ciyi+l = Di P (2.10)
where
yl = el* ’ Di = ‘-fl L4
@i* !‘gi
_r - 2x
BT fi + i_ SC S _;% = X3
h2 2h 0 Xi
14
. 2%
0 x; 1 -x; - —55 + —
" —t — h
k|. n2  2n '
C; = | %L - 1 W
h2 2h 0
0 ‘xi - 1
;7 2h . (2.11)

-Note that Equation (2.10) holds everywhere exceét in the
Neighborhood of a ring or the boundary. Specifically, if rings
are placed at spatial stations x = Xy. (3 =1,2,...), then (2.10)
holds'at all x; except xy. (3 = 1,2,.?.) and the boundary.

Equations (2.2)Jand (2.5) imply that 6* is continuous
at xN.,.but ¢* and 0*” are discontinuous. We shall adopt the
backwgga three-point difference formulae to approximate the first

and second derivatives of 6* and o* at x = x&j , and the forward
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three-point difference formulae to approximate the first and
second derivatives of 0%, ¢* at x = %y, . Then, we obtain the
3

following matrix equations from Equations (2.1) at x = X ~ and

where I is the unit matrix. The remaining matrices Gj, Fj, Ej~

are obtained from Ij' Jj, Kj, respectively, by replacing h by -h
in the latter.
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N
X = x+ : ?
Ny
+ =
Ej ¥y F3 Tyg-1 7 €3 ¥iy-2 By o
+
Ij YN]+2 + Jj YNj+1 + Kj YNj = Lj - (2.11)
Here
- +
£, £
NJ NJ
H;, = - ' L, = + ’
J g ] IN.-
Nj NJ
—_— —_— xNj
h< 2h XN
J
Ej =
=X X, + 3 - 1
Ny Ny —- -
h2 2h XN,
. | i
. 2%, 2 b4 + 1
. NJ Nj
N el i LR Y A
J h h j h<. 2h




The continuity and jump conditions

be similarly written at x=x.  as follows:

’

.‘. - .
Meyng., ¥ Noye, + Piyyn.oy * Qi¥y.ono =0
37Ny 3TNy 3¥Ny-1 3¥n4-2

(2.2) and (2.5) can

+
Ry¥ng+z * Si¥mger * Ti¥ng ¥ UJYNJ * V3¥ny-1t Wi¥ng-2 = 0, (2.13)
where
0
. -Mj .= I N - _l..c 2.— _ AV] ’
2h XN
z o3Il TO 1
‘ 2h
po= | R =
3 0 2 i | o
h ’ 2h ’
s =2-1- - ofe- 3 4
é. h T, = 2h x-N.
J - -3 : J
0 3
R ' Lrﬁ 0 v
0 3 _ v
2h
U, = xNj
J.o 3+ 2B 0
2h 2
x N‘ -
. J
. The matrices Qj, Wj,V'j are obtained from Pj' Rj' Sj,
respectively, by replacing h by -h in the latter.
The boundary conditions (2.7) at the bladder edge x = A
and i = I+l, say, can be written as ,
: TaT 0.8 Y142 ::+:ti.( Y141 G ¥3 = 0 (2.15)




where

0 0 1 0
G = K =
0 1 o . =Y
20| X (2.16)

(Note that an extra station at x = A+h has been added for
convenience.) .

The matrix Equations (2.10), (2.11), (2.13), (2.15) can
be solved by iteration. 1In this process we assume the cclumn |

matrices Dy Hj, Lj are known, and let

Yy = “iYi+1+Bi {2.17)
vhere ¢j is a 2 X 2 matrix and B; is a column vector. Substitu-

tion of (2.17) into (2.10) yields the following recurrence

relations for a3 By
. _ ’ -1
ag = - (B + Cjoy9) '
= ' -1
Si = (Bi + Ci(!i_l) (Dl - CiBi_l) R (2.18)

Since y; =0 (i.e., slope and stress function vanish at the shell

apex for axisymmetric motion), Equation (2.17) implies that

e, = By =0 . (2.19)
Therefore, by use of Equations (2.18), all other aj., Si can be
evaluated. Modifications must be imposed in the neighborhood

of a ring. For this purpose let




= O . y. . + .
Nj—l Kj-1 NJ BNJ 1 '
Yye = Q. % yN+ + B¥ .
Nj T T3NS T )
+

. = . + °'
YN = Ong YNjH1 BNy

Equations (2.11) and (2.13) furnish

1

(Vj + W-aNj_z) BNj-’l - ijNj-Z .

J

’

(2.20)

(2.21b)

= (F 7Y (m - 6By, oo)
BNj-l = ( j * Gy aNj—Z) 3 38n;-2 ,
| / -1
Kk = =[N. ) .
oy [NJ + (Pj + Q4 aNj_z) °Nj-1] MJ .
B.*% = - [Ns + (P: + Qu “N~—2)> ay. 11"}
J J J J 3 ‘Nj
[ (Py + 0y an o) byy-1 + Qjfyy-2] o+ (2.218)
ag: = (1.1, - .7 lxo ™l i7ls, - 17
J 373 i 73 i 73 i Y35
-1 -1, -1 -1 -1
= 3 s < s . R . - S
BNj (Ry77Xy = I3 Ky) (RJ™ ¥y = I3 ;)
ch'l_'l = -(Sj + xjaNj) Rj )
B = (S; + X.o )-1 (Ys = XsBnai)
" where
| : = . + . . .a [s] - d’*
Xy =Ty + g+ (V5 + Woy ) Ony-1l¥y" o
== . . - C ) ..
Yj [UJ + (VJ + wjaNj-Z)aNj-ll 8 3 ,




Note that “Nj+l and BNj+l can also bé calculated from Equations
(2.18) . However, for consistent accuracy, vwe prefer to employ

the last two of Equations (2.21a).

. Now, by virtue of Equations (2.18) and (2.21a), all oy
and B; can be evaluated. In addition, f;om the boundary condition,
Equation (2.15), we obtain YI+2 (2 second mesh point at x = A+2h
is added for convenience) as .

. .,.1 .

Since all Y Bi are known, ¥14p €an be evaluated from (2.22), and
all other y; can be computed from Equations (2.17) or (2.20).

The iteration procedure can now be described as follows:
1) iteration begins with an initial guess for ¥y (i =1,2,00)0

from which Dy (i # Nj),'H-, and Lj can be calculated for j=1,2,..0

J
A new set of y; can theun be evaluated by the process described

above; 2) the process is repeated until "convergence" is oktained.
A criterion for the latter can be defined by comparing the relative

error in a dimensicnless average deflection, p, between two consecutive

iterations. Here p is defined by

0 =i_§ jflxze*ax. | ' (2.23)
. | 0

The value of p can be plotted as a function of p. The pressure (s)
at which axisymmetric snap-through occurs can be deduced from the

local maximums of the p vs. p curve.

54




2.3 Stability of Axisymmetgic‘State'

The axisymmetric deformation of the shell is associated
with an increase in the membrane stresses Ng, N.. If the values of
these quantities exceed certain bounds, aéymmetric buckling or
bifurcation will take place. In terms of the p-p curve, a branch
on the p-p curve will appear at the point of bifurcation. If the
initial slope ol the branch at the point of bifurcatiorn is negative,

snap-through is introduced due to asymmetric bifurcation; on the

other hand, if the initial slope is positive, double folding or
pointing (w;iﬂkliné) éil; égéég due to bifurcation. Thus, a
sufficient condition for the absence of double folding and pointing
e is that no bifurcation points occur. A necesséry and suffieient
| cond{tion'f;r éhé‘absencé of éoﬁblé folding and pointing is that
the initial slopes of all bifurcation branches be positive |

(stable*). ... . __ - --

s

2.3.1 Basiciﬁélétions;

Let w be the dimensionless asymmetrical buckling mode
associated with bifurcation and y the corresponding stress function.

According to [2], fo: a non-reinforced shell © and Y are

eigenfunctions of the following eigenvalue problem:

4 PV DRI SRR SRS R FRR i
= VY- (= = o% 4+ = 0=y 6 +
Viw 1] (xw + leb) xw, x‘i’
l , 1 .. *‘
(—xu + ;-zm) o P (2.24)
A §- -0 I T T .o
TSP IR S TP
%® X

¥ In general, the stability of the bifurcation branch can be
determined from the sign of the second variation of the potential
energy as expressed in terms of the pre-bifurcation deformation ané the
bifurcation mode. 5

5
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Here B*, o* are solutions corresponding to the axisymmetric pre-
bifurcation deformation of the shell and ()z3()/36, where 8 is the

circumferential shell ¢-..:dinate (Figure 2.1) .If we expand w and

y as follows:

o0
w(x,08) = w. (X) cos né
’ ;0 & '
Y(x,0) = i \bﬁ(x) cos n6, - (2.25)
- e o e o s - - - ) n=°

Equations (5.24) reduce to

: . _2
2 . l_ R . ) ® * P *
L, wn=ann—(gwn-i-z\pn)e ey o -
. 1 f‘» *_' . 1 L4 ‘n * 7
- ¥, Ot (iwn - 22 wn) ¢ '
2 - - - .]; -'_‘ n2 g L 3 1 7 L *
Ln wn = ann‘+ (# Wy —2;”n) 0 + Z %n 8 ' (2.26)
x - .
where D -
{42 9. 2 T ’
0 A5+ 3 &) O 1,20 = Lyl (). (2.27)

4 For reihfqrced shells,Equations (2.26) hold for the shell
;ggments between rings. Matching across rings is gccomplishgd with
the aid of continuity and jump conditions. The latter are obtained
by a consideration of ring forces and moments due to.an asymmetric
displacement about the axisymmetric state. For this purpose,
consider Equations (4.72) of Chapter IV. These equations éovern
the perturbations in ring forces and moments about the axisymmetric

state. In terms of the abridged notation:
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N = —Ml,

W = -u2, v =

= le = ‘812 (2.28)

Equations (4.72) can be written

_ _e” _ £ . * =
p, = -S §+ H"F ,

o=m - S-H"F . (2.29)

From Equations (4.67) and (4.,54), the axisymmetric (prebuckled)

quantities F, N, as well as the perturbations in the curvatures

Hl, H,, are given by

F =-p_ Ty N = m_ T,
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In addition, from Equations (4.73), we obtain the following

relations: .

M = I i s _ \_I_
M (Er r ) (u - ) ’
o
F = (ArEr) (V‘ - %;' v
] N = (E.1.9 [-w~ + & .
r-r ro |’ {(2.31)

. . T =GJ ¢’+!!:
LTl o« o . . ro

Combining Equations (2.29), (2.30), and (2.31) we find

- . . Iv -,
pn =..(P_.LE_1'_\ (\7 - }-‘—) + (ErIrl) a + E—
o I ro ro

r
o
- ,: K _ 1 p s v" . .
P (ArEr) (V r (ErIr ) (:ru_ + ;7) ’ (2 32)
o o o
o _ IV o, LR + w’
gtmg " = -(EIII ) w + _:_. + GJ q_’_ ;:——2-)
o [o) o]

. - o L w“ - o] —”’ L u
mg = -GJ (¢ + — (ExI.7) (v_q_ o+ %}mero ur oy
o ro o (o]

where

p
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Let us now return to the shell bifurcation problem.
We introduce the notation N_., Ng, Npgs, 9rs ¢6+ My, Mg, Mpg as
illustrated in Figure 2.4. Before bifurcation, Np = ﬁr, My = ﬁr,
¢, = $r and ﬁe = Npg = 56 = ﬁe = ﬁre = g. After bifurcation, these
membrane stresses, transverse shears, and moments becore
Ny = Np + ng, Ng = ng, Npg = Npgs ép = ¢0p + dpr $g = dgs Mr = My
+ m., Mg = mg and Mpg = Mpg. Note that, at any ring, the values
of Nr, ny, Nyg, Qe ﬁr' m. and Meq are discontinuous. From

Figure 2.3 it is evident that the jumps in these quantities are

related to p, t, Mg, M., Pr and mg by

+ -_ .
nr "'nr = pn ? .

.

nre+ - ngg” = -Ps

+ -
mre - mrﬁ --mt I}
+ - (2.33)
m =Wy = hg e -
at - g~ =-q /
-~y =
. Mt - MT = -mg .

Let U, V, W denote the horizontal radial, horizontal tangential,

and vertical components of displacement introduced by bifurcation.




We have
U =-u,V= "V, W= w (2.34)
W = ¢,
3:

s . rd ¢ N
In addition, let ( )% = 3( )/3, and () = 3( )/96 where 6 is the
polar angle of the shell. Note that d( )/ds = - (l/ro) %.

Then, Equation (2.32) can be written as

+ - A E E I . s .n-.

n.' =-n = rzr W+ U)o+ r4r U = V) -L(Ng-Ng) (UH)
Lo To _ Lo
b e ARGy +EE G-y
npg Npg = 5 v) i (u =v)
r b o
(] _ o
‘ - (2.35)
+* + + - - -
(my .+x]‘~:_mr -%_me) - (my +_:-"__mr '%—me)
(o) O o o

G.J_. = =c 1 o~ i
= rIr (w-r W y - r4r (WtrgWw ) + —NtteNgwW

ro Xo To
* -m.- = Enzni Wer W) + Wer W
m. me~ = - (W-rgW ) (WHr W )

e I @t - mpw o+ Lt - ) (v,

ArZo To
Next, we express the derivatives of U,V in terms of the stress
_function By use of the strain displacement relations, the stress-
strain relations, and the stress-stress function relations as
shown in [2], we obtain the following jump conditions, as written

in terms of the dimensionless gquantities defined in [2):

€0




_ _l' N - _ v . - _ _ . 0':. ' 1 .-‘ LIX] n-l
= kl(XOY A4 = ) k2 [ xoW ¥ _;? (2+\3)x

. 0n oo

[«
1 e - w » - - _ *+ - _ _
+ (3+V) x_fi’ Xo.w W ] cl(XOQ [ + (1 V)

1y = - (24v)il ¥y + 3_§Y- -xow' - w’] R
xo xo xo

-+’ .+‘ o ...‘

(]
1 . _' 1 os e _ "- -. - (2 36)
[4

,rs +°7 s ) k3 - e _- kg - “w_»

LR A A (v - xw )-SR (T xgw )
X Xo 4 o < 4
o O o
-c, 1_7 (o*t - ") v, i
Xo

e, -t - had - o, c * : . .
W+ - W = - ].,;_3_3. (W - xow ) }_(_43_ (W + xow ) - - (Q + —Q )w
=<1 (e*+' - e*") -x w'”' + (1-v) }.]E__xy_’ - (2+v)1_;1',_' . 3_2_?-
: ;7 . o S X -

where w is the dimensionless W, which is different from the w

used previously. Here () = %; () and

3g 1.1 ° |
kl = M E. , kz = AEfIp , k3 = AErIr , k, = AG Iy .
Et Ea3t pa 4 Da
452, _ 4BH2t Lpq ¢, = c A21_ A
€1 = =5, = 3% % —p (2.37)
a A
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Note that kl = ¢ and k3 = b,

and U - V. Hence, we have the

" at each ring. =

in [2]1; they are

W
At each ring, W and =

The boundary conditions

are’ continuous and so are V + U
ar
following continuity conditions for

the perturbed quantities due to bifurcation

w =W o
+I.— -,
w = w ’
+" P e .’ -’ -._
y -‘:‘—w*-!._.w*:\v e
. (o) 2 X b4
xo (o] [o]
o, o, rd --+a : .o
vt 4yt 2Lyt o+ o(2+v) }lc— y' - (3+v)-1—2 yt
- by o) o Xo
e x v v =Ly s (24v) L PRV S A
:o oL X 2
. X Q X
. o (o]
' (2.38)

for the clamped edge are given

W=
w = 0
: ¢ - §. = iz ¥ =0 '
.x(w" - i— wf— i.z v - i_. ¥ - 1_2_ grv ¥+ 2(14v) (;1_‘_:13)' =0 .
at x = A, | (2.39)
| I1f we express
) 3 .
wie8) = ) uplx) cos a8 bx,0) = ) ¥y(x) cos ne,  (2.40)
h=1

n=1
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"

then for each n we obtain the following jump and continuity
conditions, and boundary conditions from Equations (2.36-2.39):

, s, LA d 4

(1-n®) (i} - ¥7) = -k, (1-n?) [xow; R [l+(2+y)n2] vy

2 P

n - - 2. - *+ -

+ .;_5 (3+Vv) v,pn + X W, = nw, ] —C1%, (¢ - % ) [ X‘,‘bn
"o

- 2 . R
+ 1 [l-\)-l-(2+v)n2]\l"n - .3_”.2. Vo - X W ="+ a2y ] .

Xq xg n n
P - - P 2
2 +° _ - — _n2 -2 _ v =% _vn -
(1-n“) (‘Pn Vo ) = kl(l n“) (wn . ‘lln — Vn )
_ . (o} Xo
_ . *+ _. * _ -“0 1 2 -A _ 3n2 -
c %, (@ ) { X ¥n + 2= [1=v(2+v)n®lv, _Ewn
o X
o
- - + 2 - '
xomn n (un ’
‘ 2
4+ -’ _ k 2 - - k4n - -
wn ~ Wn ———g(n“’n+xown)+ 5 (o + x5up )
Xq Xo
* K - - *” e
#S nZ@™ -0 ) WU =Sl (" -0 ) {exqu,  + L
2 . 2 x
Xo A - °
[1-v+(2+v)02] 4o - L " 4 n2
v vintl v, xzwn'xown"'n“’n,
o
' Py 2
+%° R _ k3 2- 2 - - n *4 - L=
w - w, —_T(n 1) (n wn+X°wn)+;—-2-(° )
x : (e}
(e}
-‘ c * L4 *-’ -llﬂ —‘
(cou = c3 %n_) + ;% (6°F -8 ) l-—wn + 1 5 [1—v+(2+v)n2]wn
(e} x
(<}
3n2 . ‘ ‘
T el (2.4
Jo xo .
ue+ =w_
n n'
, -
w; ? Un )
+°° +° . ndv g+ =T -t
¥n y;“’n 2 ¥n = V¥n ;{;‘wn e
o Xo
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,srP,

. + 1 2 +“ 3n _ _’*” 1 -
‘ | *Vn T ae [1-v+(2+v)n%) ¥+ -n—XOZ vh=xup - X [1-v+(2+v)n W
32 (2.41)
+ : .
% 2 °'n '
o
@ () =0 ,
e, () =0 ,
oy Yoy Yy o -
e (A 1—-1-+2+ 2, +§D-2- A) = 2.42
N e S UL RN Iy e AU (2.42)

It is iﬁteresting to note that the continuity conditions and
boundary conditions are of similar form.
2.3.2 Solution Method.

Next, we shall solve this eigenvaiue problem by the finite
difference method. Accordingly, we let X = X; = (i-1)h, w, = ”ﬁ(xi)’

, P, L d

* * * *
by = Vplxg), 65 = 8 (x3), @; = @ (), Uy = w30 vy = ¥y and

w, ]
y =
oi u,
i
Vi
L - .
Equations (2.26) can be written
Aiyi+l + By, +Ci¥5 = 0 (2.43a)
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(o€¥°2)
(1-1) T+ I-T
[4 - 9 T -4) U
79T +el 2 (8T €
T,1-T {T-7)
i -4) -4~ =t -
LT e T TT ¢ GuzHT ¢l 2t
»
0
¥
0 24
LI o
(aev°2) I-T .
(7 +T) M 0
Hld
0 0
0 0
L

¥

T
( "o-T)
"

[4

(1I-7)
A

T NnHlﬂv ¢AH|MV

“o e -
P Al A

aI9yM
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-1 0 0 0
0 -1 0 0
C. = ] 2 2 *"
i ~142n h 2 * -
- st % N6 )  nf- 1o 0
2(i-1)> 2(i-1) 2(i-1) i i-1
2 * . . a2
- D _(1-0 - 1l+2n 0 2,4 1
7Ty 20103 A S ¢
L

(2.434)
Equation (2.43) holds everywhere except in the neighborhood of rings

and the boundary. For the ring at x = x.N', Equation (2.43) is
3 .

replaced by the following equations

Eijj + ijNJ-l + GJyN_z 0
I.y + J.y + Xy =0 ’
e JTNg2 TNy L TRy (2.44)
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" 2

@

2
0
*®
-2(1+2n?) B s2 B -
Koo, Ny
N j
. k2
-2_h_ (1-8 )
N
.
-1
0

5 (+2n%). B .1 _h

x3 2 xN

Nj 3
1 h _a¥=
5 (1-80)
Ny J

—

0 0
2 0.
2
2 .}_‘.._(1..9N_) -2-4}—‘}-1- 0
X N
Nj 3
' h
., Yy LA
-2(1+2n2) 8 X\
% 3
Ny
(2.45Db)
0 0 0
-1 0 0
.1 h _a*" h
? 5 (1 eNj) 1+§ET 0
3 J
L (+2n®) 0 1+ 2
2 x xnu
Nj 3
(2.45¢)
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™ -1 0 0
0 -1 0
~ | *4
I.=]-12L (+m%) +1 b o+ L1 h (1-g.4) 1-_N_
J 2 %3 N Nj Xy Nj XN
Nj j J J
1 h L 1 2, h
-1 h 5% -1
2 %y (1 GN.) 5 (1+2n“) 3 0
3 3 XN,
L‘ 3
2 0 0
0 2 0
- 2(1+20%) B _ 2—§—¢;+ -2 M (18 4) -2+4 B
= : . X
J XN. xNj j XN, 3 Nj
. J b _
h *, 2y_h
2 2(1-8y*) 2(1+2n°)——¢ 0
xNj j xN.
| 3
~ -1
o
> 3 h 2 4n”-n* 2, 3n *[ 2 h2 .
Ky = |- 3 —5(1+2n?)- 7 b St + 02t
*N. N Ny x 3
j j Ny
/ ’ 2. x°
-3 h snh} 1.9+
\? XN 2 N.
5 XN, J
LV s
: 2
0 , h
-1 0
2.2 - 2 2 %
3 h n‘h * +2n?)n° _ h
T 5yt 3)(1-0.4) 1- 2B - 22IR - Syt
Ny ey N3 yooeyS Ny
3 J 3 )
2 2
- 3+ b _ 4n?-n? 12 h® - ;%— e;-
. 4 3 j
N Xy 33

3

(2.454)

o |

0

h
-2+4_—"—
XN

(2.45e)
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My ox 2 (2.45¢£)
j _ |

The discontinuity and continuity conditions, Equations (2.41), can

be written as
Lijj+2+ijNj+l+Nij; +Pij3 + ijNj“1+RijjfZ = 9 ,

~ o ~ o~ ~ o~ ~ o~ ~ o~ ~ o~

Sijj+2+ijN'+1+ijN§ +ijN5 +wijj_l+X.yNj_2 =9 -,

3
' (2.46)
where - I
: 0 0 0 0 ]
L. = )
J 0 1-n 0 0
2h?
0 0 0 0
1o 0 . 0
L 2h Jd (2.47a)
My = 4Ly o S (2.47Db)
2 ,
0 1-h 0
- o -3u-ndy, 0
N, = 2h
3
0 0 1 0
0 0 -3 0 (2.47¢)
2h
= -




~ 2 3XN. 3x 2
P. (1,1) = k., (1-n%) i o2\ _ Ny .
2 -n Cyxn. A n
] 2h 1PN3°N5 \ 2p )
P. (1,2) = -(1-n2)4k, (1-n%) | ~[14(2#v)n?] 3 4 (34y)n2 _1
J 2 Zhxy nt = -ClxN_ANj
{ 3 xNj J
2 2 |
-[1-v+(2+y)n4] 3 __ 4+ 3n
ZhXN. 2
J xNj ’

-~

Pj (1,3) = 0 ’

-~ 2 3xy, Ixy
P:(1,4) = k,(1-n“){ —1L - i
~ 3xN. 2

P3(2,1) = -Cixyidy; | —g+ -n°) .

x : 2 _ : 2
P. (2,2) = '(1"‘2).'2—?, -kl(lfnz) - 3 + Vn -ClxNjANj -[1-v+(2+v)‘n 1

TR
J Ny g2
j

3 + 3n2

2thj xN.z ,
3

§j (2,3) = 0, . (2.47d)
-~ 2 3XN.
Pj (2,4) = —kl(l-n )-ClxNjANj _251 , .

- - r : 3xy. A 3%y,
P(3,1) = - [(k3+k4)n2+(k3+n2k4+Cn2ANj).fEI_ql + C;‘S(_ Ny, 2
| 3

XN .

3

- , - C18N [ 2, 3 3n2
. 2 - : -
P4 (3,2) -;7-1 [1- +(2+ )n*°] 2thj

Pj (3,3) = -1 ?
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- C,6N- 3
1 -
P, (3,4) = ——2 Sy
J A 2h
P (4,1) = - L {n2 he (n2-1)4C.x2. Ayx.] + [h.(n2-1)-n%C.Ay. i"N']
j X%J [hy( 2% N5 Nj] [ 3(n )-n 3 N]] 2—1:1-;
2
- SL'.‘;Ni _3_+n
2 2h Ky
A Ny , .
~ 2
= Ci8yn.fr1- 2 3 3n
Pi(4,2) = - C1 N3[[1 v+ (2+v) n?] -— - 3}
22 2hxY, Xy '
j 3
P. (4,3) = - =3
J ’ 2R ,
P (4,4) = C18N53
. J Az 2h ’
5. (1,1) = ko(1-02) [~ 2XN3\-c.x\ A 2%ny
Qyths ) = kalim o UNN T TR,
Qj(1,2) kz(l n4) [1+(2+Vv)n ]th' - clxN.AN. [l=v+(2+V)n ]hx
. . J J 3 N-j ’
p 2 2%y, 2
Q.(1,4) = k,(1-n°) |- =Fi|-c.x. Ay [~ 2y
it 2 n )TN \TRY) (2.47e)
-~ 2xN-
.(2,1) = -C.x,, A -}
Q]( i ) n lxN: NJ( i) ) ,
p _ 2, 2 2y 2y 2. 2
Q.(2,2) = (1-n°) £ -k, (1-n°) ~CXy Ay [1=v+(24+v)n~]
Q5 (2,3) =0
0:(2,4) = ~Cqx. A 2y
Qj ’ - lxNj Nj = h ,
6'(3:1) = - __1_.. 2 2 - sz“ CIGN (2XN.)
J (kqa+n€k,+Cn“Ay.) D) + o | j
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(4,3)

(4,4)

=

o .
C1&N4 XN«
Az h ‘
2%\ Cqdne
-1 [k, (n2-1)-nPc g ] [~ 2XNg|- T17N3
4 o 3783 h 2
C15N' /
- 223 [1-yr2epn?l - 2
22 \ e 2
Ny '
, _
‘ﬁ ’
2 H ’
A
j ’
0 0
0 0
- .
2hX .
™3
[1-v+(2+v)n2]—2— 0
thN.
3
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h
(2.47e)
0
0
0
-XN
2h
(2.47f£)
(2.47g)




(=%}
]

<
]

*4
where A = ¢

0
0
3v N vn2
2%y.h 2
Nj xNj
[1-v+ (24V)n2] 3 3n®
QEXNj % 2
Nj
0
0
3v - vn2
2x.. h 2
N X
3 .
Ny
[1-V+(2+V)n%] 3 3n2

¢
]
= K

o~ and § =6 -8

can be combined as

e S I = O - T

3xN4
2h

(2.47h)

-l

- 3%y,
S
- ’

(2.471)

(2.475)

Equations (2.46)

(2.48)




where .
LA —— =1_
Py =By - 9% Y,
* — - e 9 ] e
Nj:NJ-QJllvj .
* —-——"'1:-..
My o= My - Q4T Ty

p** = 5, - H.F,T'T
J - J Jj J G
% %* _ _=-1'_
N. =N, - M.T .
j 5 = MT3 Yy,
3; = 0 P
b I it3 73 ’
P. = P, - i é -1E=

5 - T 5 -1~ (2.49)
= U, - S, E
3 3 iy 3
S _ S Tzl
NJ NJ LjIJ KJ ,
MJ = Mj . LjIj JJ ,
-~ -~ -~ -l~
V., =V, - s.I .
J J 373 KJ' ’
= ~ ~ S a1
T. =T, - S.I, "J.
-3 I I
The boundary conditions, Equations (2.42) can be
written as |
Y + 2y - Yy . =0
Yrep ¥ W1 7 W1 70 (2.50)

5




where
e —
0 0 0 0
~ 1 0 0 0
7 =
0 _ v 0 0
Finy
0 - o:_ [1-v+(24v)n?) 0 A
_ " A% |
(2.51a)
1 0 0 o-1
- 0 0 0 0
Z 2
0 _ .’_‘_% 0 1
A
0 3n? .. =0 ;_- -0 s
a 2 | (2.51b)

TPhe solution of the critical load for bifurcation can be

formed by the following procedure: Let aj be a 4X4 matrix and

~ M

Yi = %¥i41 . - (2.52)

From Equations (2.43) we obtain the following recurrence relation
between oy (i = 1,2,...). -

~ -~ 1~

Since §i = 0, we have -
1 .
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Thus from Equations (2.53) and (2.54), we can find all aj up to
the neighborhood of the first ring i = N = 2. Note that
Yng-2 T ONg-2¥Nj-1 ¢ g+l T Ongei¥nge2
(2.55)
Let
yNj-l = an-lYNg ' (2.56)
Yo = ByT Yy
Ny T PN3 YNy ' - (2.57)
~ 4=
y . B N Y N (2058)
Nj Ny TNyl .
where B8, . _ B~ and B f are 4X4 maﬁrices. From Equations
N] 1’ NJ NJ -
(2.44), (2.48), we have
-~ -~ _1 -~
cm] = = (F.+G. 0y, . .
BNJ‘ 1 (F +G; %Ny 2) T Ey | (2.59)
8.~ =-(pt 4By 7t o (2.60)
Ny 3 RNy i .
+ o +piey) TIMY 2.61
Gyany = =(T.+K, Bt I, 2.62
. Ny+l ( 3 JBNj) 5 . (2.62)

For i i N5+2, we again use the recurrence formula (2.53). There-
fore, we are able to calculate all coefficient matrices a and B

up to the boundary of the shell. From Equations (2.50) and (2.52)

we have
*~
S y1+1 = 0 o (2.63)
where
( ‘*_.§+ ~~a a 4
S = (2-Y Ial) I - (2.64)
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For a nontrivial solution Yrspr YO must have
®
det § =0 . (2.65)

Equation (2.65) is the characteristic equation for determination
of the critical pressure for asymmetrical bifurcation.

The case n = 1 is a special case in which the differential
Equations (2.26), the discontinuity and continuity conditions,
Equations (2.41),and the boundary conditions, Equations (2.42),can
be satisfied for all p by an exact solution w; = © and ¢l = X.
Hence, for the same reason explained in [2], we have the following

equation for the case n = 1

(5] Urq (2.66)

v
L‘I+1

—% . . * sq &
where § is the resulting matrix obtained from S by striking out
the second column and the fourth row. Thus, for a nontrivial
solution, we have

det S =0 . (2.67)

Equatlon (2.67) is the characteristic equation for determination
of the critical pressure for asymmetrical blfurcatlon with n = 1.
2.3.3 Numerical Procedures.

For a given geometry of a reinforced shallow clamped
shell,_ﬁevdsh to find the critical load for axisymmetrical
snap-through. Also,we want to know whether there is asymmetrical

bifurcation before the axisymmetrical snap-through load is reached.
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First of all, we choose a sufficiently small mesh size h
such that the error due.to the finite difference method is
insignificantly small. For convenience, we shall assume that the
positions of rings are arranged such that they are at the grid-
‘points of the mesh. Therefore; we have I = 1l+A/h. The position
of M rings, designated by i = Ny, Nz""'NM can be determined;

Set IND =0,
In the initial trlal, we set 6 and ¢* equal to zero.

We may evaluate Ai, Bi and C. from Equations (2 11), G and K

from Equations (2.16). For jJ
*
) xj = xNJ, Ej, Fj and Gj' Ij' Jj and Kj from Equations (2.12),

J' Nj' P, ’ UJ, Vi

1,2,..., M, we can calculate

j Q ’ RJ: SJ, TJ j and WJ from Equation (2.14).

l1and 2 and j =1,2,..., M, we can set eij = &3 ij =9,

-For i
where i = 1 stands for (-) ‘and i = 2 for (+). Also we set
@ = By =p=pg=0.

(d) For i = 1,2,...,I+1, we may calculate £ and gi
from Equations (2.8a) and (2.8b) and Dj from Equatiors (2.11).
For i = 1 and 2 and j = 1,2,..., M, calculate fij

Equations (2.8), Hj and Lj from Equation {2.12). Then for

i=2,3,...N;-2 calculate a; and Bi from Equation (2.18) and

and'gij from

set j =0.
' L3 K3 . . * * ‘
(B) set j = j+l. Find @Ny-1, BNj-l' @y Byr X5 Yj'

ONj, BNy, ONj+l, BNj+l from Equations (2.21).

(1) If 3 <M, for i = Nj+2, Nj+3,...N4 -2, evaluate

a; and Bj by Equations (2.18) and then go to (B).
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a; and By from Equations (2.18) and calculate yj,, from Equations

+3,..., I+l, calculate

(2.22). For i = I+I, I,...Nj, calculate Yi from Equation (2.17)
and set j = M-l.
(C) ;alculate yz'Nj ' yl,N- , and Yy _i from quation

J J
(2.20).

(i) 1£ 3 > 1, theﬁ for i = Nj—z, Nj'3""Nj—1+1 calculate
y; from Equation (2.17), set j = j-1 and 'go to (C).
(ii) If j =1, for i = N;- 2 Nl—3,...,1 calculate Yi
from Equation (2.17) and then calculate P from Equation (2.23)
using Simpson's rule where GNj is 01,N.:°
(1) If (p-pg)/pg is greater than a prescribed
limit of error, set pg = p and IND = IND+1. If IND <0, go to
(A). Otherwise,go to end.
(2) If (p-p )/pg is smaller than a prescribed
limit of error, set j =0 and.go to (D).
(D) § = j+1.
(i) If j < M for i = 1,2...,Nj-1 evaluate Ri' Ei, and
Ei from Equations (2.43), Ej, Ej, éj, ij, Ej, ij, ij, ﬁj, ﬁj, 55

QJ, RJ, SJ, U;t VJ, WJ, XJ from Equatlons (2.45-47), ;, N"-r

M3,
er PJ ' N:| p QJ, PJ, T], UJ, NJ, MJ, VJ, T~ from Equations (2.49).
Go to (D).

(ii) If § = M, for i = N1, Ny+2,...I-2, evaluate 'y
51 an@»si from Equations (2.43), Y and 2z from Equations (2.51).
Set a7 =0, for i = 2,3,..., N;~2, calculate oy from Equation (2.53)
and set j = d. .

(E) Se. j = j+l. Find BN-—l from Equations (2,59),

BN5 from Equations (2.60).6N§ from Equations (2.61) and “Nj+1
from Eguaticns {2.62).

1
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(i) If § <M for i = Nj+2, Nj+3,..., N.+ =2 calculate ai

j+l
from Equation (2.53) and go to (E).

(ii) If j =M for i = Nj+2, Nj+3,..., I+1, calculaﬁe o5
from Equation (2.53), s* from Equation (2.64).

(1) If n = 1, evaluate §* and det 5. Print p, n,
det §*, Set p = p+Ap. If p < pe (pg is an assigned value), then
go to (A), otherwise go to end.

(2) If n > 1, evaluate S* from Equation (2.64) and
det S*. Print p, n, det S*. Set p = p+Ap. If p < Pgs 9O to (p).

Otherwise, go to end.
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2.4 Discussion

As was noted previously, a sufficient condition for the
elimination of double folding and pointing in bladders consisting
of rib-reinforced shells of revolution, is that no asymmetric
bifurcation points exist. A necessary and sufficient condition
(but less conservative) for the elimination of double folding
and pointing is that all existing bifurcation branches be unstable.
It is evident, therefore, that numerical programs are necessary to
predict asymmetrical bifurcation if a rib-reinforced bladder is
to be successfully designed.

In this éhapter, a finite-difference method was
developed to predict the nonlinear axisymmetrical deformation,
and asymmetrical bifurcation of shallow, ring-reinforced spherical
caps. The method emploYed appears to be quite tractable, in spite
of the complexity of the problem. Only minor modifications wouid
be necessary to include the case of a shallow, ring-reinforced
shell of revolution with arbitrary meridianal shape. Extension
of the methed to déep ring-reinforced shells of revolution should
also be p;ssible, but would certainly constitute a major analytical
effort.

For deep sﬂells the foregoing program constitutes a first
step in the solution procedure. A segment of a deep shell of
revolutién sufficiently near the apex can always be approximated

by shallow shell theory. It would appear, therefore, that one
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sensible solution procedure for bladders that are deep rib-reinforced
shells of revolution would be to couple a shallow shell (representa-
tion near vertex) to conical shell segments, the latter approximating
the deep portion of the shell between rings; It should, of course,
be noted that the treatment of the shallow and deep portions of

the shell would be guite different. For example, in the deep
portion (under large axisymmetric deformation) the central portions
of the shell would act primarily as a membrane, bending moments

being important only in edge zones near a ring or boundary. This

is in contrast to the prebuckling (axisymmetric) deformation of
shallow shells for which the bending moments are significant over

the entire shell. In order to properly calculate the edge moments

in the deep sectioﬁs, an asymptotic analysis, together with the

results of Chapter I, would be necessary.
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Figure 2.3 Discontinuity in Membrane
Stresses and Bending Moments.
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CHAPTER 111

ANALYSIS OF A SINGLE FOLD IN AN
ELASTOMER-METAL COMPOSITE

3.1. Introduction

For a composite that consists of a thin layer of metal placed
between two layers of elastomer, and that undergoes folding, a good esti-
mate of the state of stress is obtained if we use th'e following procedures:
a) find the stress fields in the inner and outer layers of elastomer, using
large deformation theory of elasticity, and treating the thin layer of metal
as an inextensible central sheet (one may also regard the metal sheet as an

elastic layer with an equivalent elastic constant, but we shall not do this

here); b) under the bond stresses transmitted to the middle metal sheet by
the elastomer, and using a plasticity theory, find the stress and strain
fields in the metal layer. The assumption that the inner metal layer is"
inextensible can be justified on the grounds that the strains in the elastpmer
is by far larger than that in the metal, even when the metal undergoes
plastic deformations. (On the other hand, the fact that the central metal
sheet ih fact is not inextensible can be accounted for by using some equi-
valent elastic constants, which may be taken to depend on the state of de-
formation in the metal or may be regarded constant throughout the metal
layer at each state of loading.)

In the following, we shall formulate a plane-strain problem for

the analysis of a single fold, using large deformation theory. In this formul-
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ation, we employ the Lagrangian (or the initial particle position) variables
as our independent variables, and integrate the basic field equations using
an incrementai loading and a finite-diffe rence scheme.

Although the idea of accounting for both geometrical and material
non-linearities in finite deformations by means of a step-by-step integration
is not new [1-4 ],the use of the Lagrangian coordinates in conjunction with
small deformations superimposed on finite initial deformations is new. In
- fact, it apgearé that a consistent and exact formulation of this kind has not,
as yet, been developed. For example, in such a formulation one must be
careful if Cauchy's stress tensor is used, since after each loading step the
stress increment cannot be directly added to the initial stress field if they
are not both referred to the same configuration of the body. Moreover, even
if the body may consist of a material wh icﬂ is homogeneous and isotropic in
its natural (virgin) state, at a given state of stress the same material, in

general, is nonhomogeneous and anisotropic in its response to an incremental

deforrmation su.perimposed on the initial stress-state. These and similar
facts are unfortunately not fully appreciated by most numerical analysts
in the field of structural mechanics.

A complete and correct numerical formulation of finite deformation,
including thermal and material mémory effects, has been given by Oden in a
series of papers [5,6]. Oden, however, casts his field equations directly
into a system of non-linear algebraic equations which may not readily lend
themselves to 2 numerical evaluation; the required iterative numerical pro-
cess may become divergent. We note thata methed of this kind has been

first used by Becker [7].
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An incremental formulation of large deformation problems is
presented by Felippa [ 8], using an Eulerian formulation in which all
the field quantities are referred to the current deformed state of the
body. The fact that the g rometry of the body in finite deformation is
continually changing makes such a formulation cumbersome. In addition
to this, Felippa's results are based on a stress-increment which is
incorrect in the sense that it lacks a term linear in the displacement
gradient and proportional to the stress tensor at the given state. For
metallic materials with elastic moduli of the order of 30 x 106 psi, this
term can be neglected without inducing substantial errors. For non-
metallic materials, and also for metals in the plastic range, on the
other hand, this term is of the same order of magnitude or larger than

those included, and hence may not be neglected. In addition,to this,

'Felippa uses the isotropic version of Hooke's Law to relate his stress-

increments to the corresponding strain-increments at a finitely deformeu
state. Such a relation, in general, is incorrect.

In Section 5 of this chapter, we shall formulate a general variational
approach for an incremental loading at large deformations. We shall
employ consistently a Lagrangian formulation, leading to results which
are exact in the framework of the considered incremental loading.
Moreover, no assumption will be made regarding the elasticity coefficients
in the stress-strain incremehtai relations so that our result would be
applicable to elastic materials of all kinds which may even be anisotropic
in their initial undeformed state. The numerical formulation of this
variational approach is not presented her2. The method however, lends
itself to a consistentfinite element approximation, see Nemat-Nasser
and Shatoff [ 9 ]. -
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3.2 Kinematics, Dynamics, and Constitutive Relations

We choose a fixed rectangular Cartesian coordinate system with

the unit base vectors ey &2 and €3 and let 2'{ = x121 +X2 eo

+ X3 eq denote the positions of the particles X in their initial unstrained

state. We refer to X = Xa € g 25 the Lagfangian coordinates, and let

~

x) = x (X, X5) '
X, = xZ(Xl.Xz) , | (2.1)
xg = X3 .

denote the positions of the particles in a deformed state; x = X; €. will be
referred to as the Eulerian coordinates. Here, the repeated subscripts,
- ' o and i, are to be summed for a,i = 1,2,3. We assume that (2.1) is a

smooth and invertable mappir;g, having the following inverse:

Xl = Xl(xl,xz) .
XZ = Xz(xl.xz) , (2.2)
X3 = X4 .

Hence, we assume that the Jacobian

. axl axl
° 1 axz dx, ox dx, 9¥x
;= _ %X o H M 2.3)
axl BXZ axz axl )
3 x 3 x
2 2
axl BXZ

is neither zero nor infinity.
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For the sake of conc¢iseness in the presentation, we shall use Greek
subscript letters to refer to the Lagrangian, and the Italic subscript letters

to the Eulerian variables, respectively. Since plane-strain problems are

considered, these subscript letters will have the range 1,2. A comma

followed by a subscript letter will denote partial differentiation with respect

to the corresponding coordinate.

The so-called Green's and Finger's deformation tensors are

= = xX. R 2.4
£ = Coplals " *i,0"i,82a %8 (2. 42)
= = 2.4b
b= by 2585 T X, 0,081 L) ’ (2.48)
and the Lagrangian strain tensor is given by
e=%(C-3) . (2. 4c)

*
where § denotes the identity tensor. We note that the normal component

of C in a direction defined by the unit vector M gives the squared str.etch,
(ds[dS)2 , of an element initially in that direction, where dS is the initial
and ds the current length of the element. In particular, the principal values
of the symmetric tensor g (or those of 3) are the squared stretches Af{ ,
K = I,1I,III. We note that, since a state of plane-strain is assumeq. the
23-direction is one of the principal directions. If we let this direction be
that of the third principal axis, we then have Am =1 . The squared

stretches, Af{ , are the roots of the equation

F3

if MO! and Ca% , a8 = 1,2, are components of M and C, respectively,
then the normal component of C in the direction M is given by CQB
Ma MB .
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23-T22+ﬁz-_—i=0 R (2. 5a)

the considered plane-strain problem, the basic invariants

where, for

of C (or those of 2) are

- _ .2 2
1 trg-AI+An+l

- 2,2 2 .2
Il = Af A t Af + Ay

(2.5b)
=T +1-1
fe—— _ ,2 ,2
I = AI AII
Substitution from (2.5b) into (2.5a) now yields
3 = 2, 0., =
z- -1z +(111+I-1)z-111-0 (2. 5¢)

which has one root equal to 1. Since in (2. 5b) there are only two independent

invariants, we shall denote them by

_ A2 2
(2. 5d)
. - A2 .2
. I = Ay AL
For incompressible materials, we have
3x, d¥x dx, ¥x
1 2 1 2 .
J =/ = - ‘ =1 . : (2. 6a)
BX1 BXZ BXZ axl .
. 2 _ .2
Now setting Al = A° , we reduce (2.5d) to
=42+, m=1 (2. 6b)
A
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Let us ncw consider conditions for the equilibrium of an element.
*
To this end, we denote by J = Tij e, 35 the Cauchy (or true) stress
tensor, and note that the traction vector on an element having a unit normal

y = vj Ej in ’its deformed state is given by

~

t., = T.. v, . (2.7)

where t = t; &; is traction per unit current area of the considered
~ .

_element. Now, in the absence of body forces, the equilibrium equations

are
-] T'i
—Lax. =0 . (2.8)
: J
For our formulation, it is more convenient-to work with the so-
called first Pialo-Kirchhoff stress tensor, ER = Tgi [P ‘defined by
X . :
R _ o A
Tai J ij Tji . (2.9)

We note that TaRi is the component in the Si-direction of the traction vector,
measured per unit initial area, acting on an element that initially was per-
pendicular to the Ea-direction. TcI:i is not a symmetric tensor.

In terms of the stress tensor ER the equilibrium equations (2. 8)

become
aTR
ai

axa

=0 - - (2.10)

which are expressed in terms of the Lagrangian variables.

Since no couple stresses will be considered, J isa symmetric tensor.
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To formulate the constitutive equations for elastomers, we shall
%*
ignore all thermal effects, and assume that the elastic solid is homogeneous

and isotropic, possessing a strain-energy function given by

T=3%(T, I, T) , (2.11)

where T, I, and III are the basic invariants of the Green deformation

tensor C. In this case, it can readily be shown that the stress tensor

R .__. :
'Tai is given by
R _ 3%
ai axi’a

(2.12)

Using a straight forward but lengthy calculation, one can show that Cauchy’s

stress tensor may now be expressed as

‘ 2)— 3% 3T ,= 3T 3T
T.. = 2{I[I —= §..+[—= +1—= b.. - == b., b,. . 2.13
4 J{ o1 (af a'ﬁ) RS kl} (2. 13)

where bij are the components of Finger's strain tensor defined by (2. 4b).

For incompressible materials, (2.13) becomes .

7. =-pb. +2|22+128 b 228 b b : (2.14)
i 5757 Tem| ¥ em XM
where p is the hydrostatic pressure to be determined as part of solution.
From (2.14) it can be seen that the principal stresses Tk , K =111, 111,

are related to the principal stretches AK , K =1,11,11I, by

TK=-p+29-§—_Af{-z%Ai{2 , (2.15)
ol ol
These effects can be included, but we shall not do this here, since it
" will take us beyond the scope of the present work.
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where we also have

Ap Ay Apg =

]
[

because of incompressibility.

ideal materials for which the strain-.energy function, ¥, takes on

the form
T=%0a(-3)- %8 (- 3) (2.16)
1 S :
were considered by Mooney [10] for representing the elastic behavior of
rubber-like materials. Here o« =2 E—E- , and 8 =- 2 ig are assumed
ol oIl

to be constants characterizing the material. For 8 =0 , we have the
strain-energy function of the so- callea neo- Hookean materials considered
by Rivlin ['1‘1] This type of strain-energy functions can also be developed
using a statistical approach and a molecular theory for highly elastic
materials, as is shown by Treléa‘r n23.

For incompressible plane-strain problems, (2.16) may be written

as

T=2%pu(T - 3) , | (2.17)

where, for small deformations, g can be interpreted as the classical
shear modulus. In the fbllowing, we shall illustrate our results uéing the
strain-energy function (2.17). However, these results can readily be
mrodified to account for more complicated constitutive relations that may

correspond to a given elastomer.
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3.3 Formulation of Basic Prcblem

3.3,1 Field Equations: Using the expression (2.17), we express

o’

xi _ Xa .
_T LS e - p P — ’ (3. l,
TR 3 axa CE

where E = -E . Egquilibrium equations now are

2 - 2

[-1- TR,] B} 9 X5 2 axa‘; ? Xa

b Taio BXO‘BXQ qu axi axiaxa
. 2 _ .
Since ? Xa/a e aXa = 0, we obtain

2
. - 93X
[ sl o a>ac :;c - aa; s - O (3.2)
B o’ “a g8 %%

Consider now a defocrmed (equilibrium) state of the body, and
let uy = ui(Xl,XZ) and q = q(Xl,XZ) denote, respectively, 1variat;ions
in x; and p that are induced by increasing the applied loads or thé im-
posed surface displacements by small amounts. We assume that the new
state of the body, defined by % +ug and p + q , constitutes an equilibrium

state. Writing the equations of equlibrium for the new state, and using (3. 2),

we obtain
(a xi) az u, az X du, 3q
. - + = » i,a’szl'z M (3°3)
B}SB axaaxa BXQBXa BXB axa
Since the material is assumed to be incompressible, we have J = det lxi al
? x, u. : !
_ i iy - . .
= det l—-——ax t 3% | = 1 which yields
Toa o
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aul axz auzaxl Bulaxz Buzaxl

S -3 + =0 . (3.4)
3X, 3%, = 3X, 3X; T ¥X; 3K, © ?¥3X, ?X,
To simplify notation, let us set
X=X , X =Y . oxp=xo, %7y
(3.5)
2 2
upFeoe RV s Rl -
3X Y
and obtain, from (3.3) and (3.4),
2 3 2 2 ?
(-g—x)Vu+(-a—}%)Vv+(V$)-a—xg-f(vy)g_)%:%% (3. 6a)
2 2 ? .
(%?)V“(’g‘%)v"*wx)r?+(vy)9?=%—% (3. 6b)
3y)du ,(3x) dv _(3y)3u _(Ox 3y .
(53) 3% < (5%) 3 (3%) 3% (ay) % -0 - (3. 6¢)

For a given state, x and y are known functions‘of X and Y. Hence
all the coefficients in equatxons (3. 6) are known functions of X and 'Y .

These equations, therefore, are coupled linear partial dxfferenual equations

defining small changes in the particle positions and the pressure caused by a

" $mall change in the boundary conditions.

Beginning with the undeformed state, we apply the first increment
of loading (or displacement) on the boundary. Corresponding to this boundary

cbndition, we solve the following equations:

2 2 -
veu = a—% , | (3.7a)
2 3g
v =3y - (3.7b)
;
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du _, dv _ '
-gx- + W 0 . (3. 7c)

Denoting the solution to these equations by a superposed zero, we write

x(l) =X + u(o) . ‘
S oy g 0

q(l) =0 4 'p(O)
Using x(l) , and y(l) , we calculate ax(”/ax . Bx(l)/aY , etc., and

(1) , v(l) , and q(l) that correspond

substituting into (3.6), we solve for u
to a new incremental loading. In this manner, the field equations are

integrated step-by-step.

3.3.2 Stress Boundary Conditions: Let S, denote that part of the

boundary S of the body on which the surface tractions Ti are applied.

We then have

Tal Na = 'I‘i on Sl , (3. 8a)
where N = Na Sa is the unit normal on S1 in its undeformed state.
Substitution from (3. 1) into (3. 8a) now yields | .

? X, axa
Ti"‘Na .u—a—}—(—a-p-a—’q . (3.8b)

To express this equation in terms of the Lagrangian variables only, we

write

- -1
[xa,i] - [xi.a]

98




or '_
ax  ax o] [2 _2 0
? x 3y 3Y X
ay Y | . |.2x 3x
RS Ay Y X
0 0 1] | o 0 1|

With the aid of (3.9), (3.8b) becomes

1o =n (22 .353Y)+nN 5y &x
: T Nl(ax PaY)+N2(1+P’ 2y

wi-
o

= 5y &Y 3y .5 8%
T, =Ny(1+P] ax*Nz(aY pax)

If ATi denotes the increment in surface tractions on S1 , we obtain

i—m*l: l(ﬂ-'ﬁﬂ)+N2(1+'§)—g—;—‘+(-N 2Y 4N -3—")q .

Since the final stress field must be expressed in teims of the true

(or Cauchy) stress tensor, we shall note here the following relations:

T?l‘%\%Tll'g—%le ’
T = ¥ T21' - 3% Téz ,
T?l"%'ru *%‘}%TM .
T3, = - 3% T2 *%‘;'Tzz
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(3.10b)

(3.11a)
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Solving (3. 12) for Tij . we obtain .
T;ﬁ%ﬁ“?ﬁ?*?: '
Tz = To '%‘%.T?l +§yT§1 '
Topy =T ° 8% T * %"‘{ Ty '
T,, = —2—}% TS, + %’% T3, . | (3.13)

~3:3.3 Boundary Conditions at Elastome r-Metal Interface: As was

pointed out in Section 3. 1, when calculating the stress field in the elastomer,
the thin middle layer of metal may be regarded inextensible. The condition
of inextensibility is that the normal component of the Lagrangian strain
tensor, taken in the direction of a unit vector tangent to the initial elastomer-

metal interface, is zero, that is

2E._ M M
21

o8 MM -1=0

B *L,ati,5 a8
or

X o 1'stMa 1 . | (3.14a)

where M = Ma o is a unit vector tangent to the elastomer-metal inter-
face in its initial undeformed state. For the incremental loading, (3.14a)

must hold in each step, leading to
9 o%i, 8 MaMB =0 . (3.14b)

In particular, if I'\./I is taken to be parallel to the X-axis, we have Ml =1,

M, = 0, reducing (3.14b) to
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o
=4
oY
X
<

3v 3y . :
+ S =0 . (3. 14c)

|
|

E
E

9 )

In addition to the kinematical condition (3.14) at the interface,
the normal tractions exerted on one face of the metal sheet by the elasto-
mer must be balanced by that applied on the other face of the metal. As-
suming that the metal sheet is very thin rellative to the elastomer, and

using the inextensibility condition, we get

[TR. X . N_N ](+2 [TR. X, .N N](-')= 0 (3.152)
ai B, a8 ai “p,i a8 ! !
where the superscript (+) refers to one face of the metal sheet. and the
superscript (-) refers to the other face. Note that the usual sign convention

in elasticity is used, namely that normal stresses are positive in tension

and negative in compression, and that the positive shéar stress points

towards the positive direction of the corresponding axis when it acts on a

plane whose unit normal points toward the positiQe direction of a perpendi-

cular axis. Here N = Na o is a unit vector normal to the interface. In
particular, if we take 'Ij parallel to the Y-axis, we have N1 =0, N2 =1,

which yields

, (+) (-)
[TR 2x_ R 2x =[TR %_5 - T? 3_’_‘] . (3. 15b)

R 3x R 2u R 3x R 4]
[ATZZ 3%t Tz 3% 2T - T, ]

R (-)
= [a«rg 2x, R au-a'rf 3x_ 1R 3—5] . (3.15¢)
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3.4 Numerical Scheme of Finite-Differencing

The system of partial diffe rential equations (3. 6) will now be

written in the following form:
Ay=d4d-CUu : (4.1)
~~ ~ ~ ~ ~

where é is a square matrix with known elements, U is a vector of un-

knowns, d is a known vector, and C is an operator matrix representing
P~ -~

the difference correction. When the appropriate boundary ‘conditions are

incorporated in (4.1), the solution at each step of incremental loading may
be obtained as follows: 1) neglect the second term in the right-hand side

of (4.1) and write

k(1) = g'l d ; (4.2a)
2) obtain a first correction 7! as
3) with 1’{(2) = ~(1) + n(lj , obtain a second correction as
!1(2)= -ﬁ'l c e . (4.2¢)

~

4) continue this process until a sufficiently accurate result is obtained.

We note that the above method requires only one ‘matrix inversion. All

R )
corrections are then obtained by means of the matrix multiplication. We

shall now outline a way for obtaining equation (4.1) for the considered

problem.

3.4.1 The §-Operators: For a given function f , we define the so-

called §-operators as shown in Table 3.4-1. With the mesh sizes h in
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TABLE 3.4-1

Definition of §-Operator

5 52 53

£4]

£ 3"-4
£, £ 26 o+, .

2L £ -3 51y Lvackwara
£, £ ,-26 o, £ -4 6T _p-4E g4

£ -1, -3 43,1 3
£, P g | £-4f +6f_ | -4f o+

£t £1-36,43f -6 ,
£ B(Ey -1 f 200+ ) = | BlE,-26 426 (-8 ) f,-4f +61)-4f | +_, —l-central
Y

£,-1, | £,-3£ +3f-f_
£ £,-26 +, £,- 41,461 - 41 H_|

£,-1, £3-3£2+3£1-f0\ |
£ £,-26,41) £,- 48 460,- 48 4o

o~

£3-fz f4- 3£3+3f2-f1 forward
13 f4- 2f3+£2

f4f3
£4
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the X-direction, and k in the Y-direction (Fig. 3.4-1), we have
h o= X(j+1) - X(7) ,» k= Y(i+1) - Y(i) 0,

where a node (j,i) has cocordinates (X(j) , Y(i)) in the reference state.

Introducing the notation

2 2
-] 2 =) 3 2 [
D, =% , D, = ——s , D, =% , D, =—s
X 98X _X aXZ Y oY Y aY2
we write
e 1 2 2 _ .2 2
th-6X+CX , h DX—6X+CX .
_ g1 1 2 .2 _ .2 2
kDY—GY‘l'CY , k DY--6Y+CY ,
where the correction operators are
1 _ 1.3 1 5 1 .3
Ck=-%0xk*30 0k~ --~"60% '
2 _ 1 .41 .6 ' 1 .4 _
CK_-126K+905K-""”-12 6K v KXY

Now, with [X(j), Y(i)] = [(j-Dh, (i-1)k] defining the node (j, i), see

Fig. 3.1, we have

?f . " c o )
h_aX = & [f(j+1, 1) - £(j-1,1)] + Cx £(j, i) R
where

kg =3 LG, 1)) - 10,4101+ chiy .

vcf", £(3;1) = - ﬁ [£(, i+2) - 2£(j, i+1) + 2£(j, i-1) - £(j,i-2)]
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(4.

(4.

(4.

(4.

3a)

3b)

3c)

3d) |

4a)

. 4b)

. 5a)

. 5h)




In this manner v%s = Bzf/BX2 + Bzf/BYz can be expressed as
2 2, _ ¢ . . . 200 s -
h® 9°f = £(j-1,1) + £(j+1,1) + £T(£(j,1-1) + £(5, i+1))

- 20458 16, 1) + Cfu ) (4. 62)
where

Cotyy = - L (8G-2,5) + €642, 3) - 4LEG-1,0) + £G+L D]+ 24(3, i-2)

+ 2240, 142) - 4:2[E(G, i-1) + 4£(, i+1) + 6(1+:5) 15,0}, = =2 (4.6b)

3.4.2 Finite-Difference Equations: The system of partial dif-

ferential equations to be written in a finite-difference form is given by

dx 9x

(3.6), where the coefficients 3IX'3Y ¢ etc., are known functions.
We define
= &% =3x =2y _ 3y
i gll T X ’ glz TY ’ g21 3 X ’ 822 Y , (4.7a)
- _ 22 '
Gl—Vx R Gz—Vy , (4. 7b)

where all operators are defined explicitly in Egs. (4. 4) to (4.6). We then

obtain
gIIVu+g21V v+01%1+02%-‘}%-.24)}=0 , (4. 8a)
8szu+gszv+Gl?+Gz§—x-§—3=° » (4. 8b)
822 %v“‘gn ‘3‘3?‘821 aa_?f - 22 %‘V =0 . (4. 8¢)

where AR and GA , A,B=1,2, are known funétions of X and Y,
the unknéwns being u, v, and q . For an interior nodal point (j, i),

2sjsN,2sisM, Egs. (4. 8) reduce to
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' T _
. (G,16,1G5){uw. v, 2} ={c} ' (4.9a)
where
- 2 h 2 h 2
rTg); g1-3 G -20+r7)g), g v3 G Togy T_
2 hr ’ 2 2 hr
G, = g3 G g2  -2(l+ri)gy, g2 gt 3 G
Lr 821 -822 0 €22 - Tgy T e
(4. 9b)
_ 2 h 2 h 2 3
r gy g5,-3 Gp -2(14r7) gy 821772 G, T o8y
2 hr ) 2 2 hr
G, = | T 827G g2  ~2lltri)gy, 822 rgt3 G
L“' 811 g2 -0 -€)12 g
(4. 9¢)
B h h )
0 3 -2 0
4, = he 0 0 AE : (4. 94)
K 0 0 0
u= {u(J’i'l) » \l(j'l,i) ’ u(jrl) ’ u(j+1!1) ’ u(j’i+l)} » (4' 9e)
“u = (v, i-1), v(i-1,1), v, 1), v+l i), v(j, i+1)} , (4. 91)
* 9= {q(j,i-1), q(j-1,i) , q(j+1,1), q(j.i+1)] , (4. 9g)

- 1 .. 1 . . 1 . .
[-g“ Co- Gy Cx}u(J, i) + [-g21 Cy- C":-Z CX]V(J, i) + CX q(j, i)
l . - - l (3 I3 l . . s
{C} = ["glz CV- Gl CY] u(j, i) + [‘gzz CV- UZ CY] v(j, i) + CY q(j, i) » (4.9h;

1 1, . . 1 1, . .
(-85, Cx + 82 Cylutini) + [g), Cx - gy Cylvlird)
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where the right-hand side of (4. 9a) denotes the correction term at the
interior points. From (4. 9h), (4.4), (4.5) and (4. 6) this correction can

be written as

(e} = GG i {u(j,i-2) , ul,i-1), u(i=2,8) , w(-1,9),
u(i, j) , ulj+l, i), u(j+2,1), u(j, i+1) ,
u(j, i+2) , v(j,i-2), vij,i-1), v(j-2,1),
v(j-1,1) , v(i,j), v(j+1,1) , v(j+2,1),
v, 1+1) , vii, i42) . alj,i-2) , 9. i-1),
a(j-2, 1) , a(i-1,1) , qG+1. 1), a(+1.9) ,
aG, i+1) , aG. #2)}T | (4. 10a)

where g (j,i) isa3 x 26 correction matrix associated with an interior
point (j,i). This matrix is defined in Eq. (4.10b). Note that in (4.10D)

there are three rows and twenty-six columns.

c(, i) =

. 2 G 2
1 r Y r_
12 821 1z 812 " 12 1z 11
. 1 . ﬁ + 5 ﬁ
- % 821 3 812776 -3 BN
- omem—tn A — l -G—-l—
12 822 12 B12 12 811~ 1
1 1,5
6 B22 3 812 38117 7%
1 2 1 2,
0 > (145 g, 5 (141 g
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1 1 2 .
-6 22 3 812 “3811° %
1 1 1. .4
12 822 1z 812 12 811 7 T2
1 2 S P
6 821 3 812" 7% S 3 EnN
R _rE + E;_l rZ
- 12 821 1z 8127 12 1z 811
1 2% 2
"1z 811 12 822~ 12 12 821
% 811 3 822776 -3 B1
1 1 1 %2
iz 812 iz 822 12 821~ 12
: G
1 1 2
"% 812 -3 822 38atw
1 2. 1 2
0 "2' (1+r ) gzz '2"' (l+r ) g21
1 1%
6 12 -3 822 "3821° 76
1 1 P .S
12 812 12 822 12 8217 12
. 1 r? G, P
% e -3 822" 7% -3 B2
1 £ % P
12 811 12 822 7 12 12 21
.
_ 0 -l_i 0
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0 0 +
0 0 _%
0 0 %
0 0 -le-
0 2 0
0 - 15 0

(4. 10b)

Note that for 3sj<N-2 and 3sisM-2 , the expression for C(j,i)
does not involve out-boundary points, which are points added outside of
the considered domain so as to improve the finite-difference representation

of derivatives at the boundaries. For 2>1i and 2>j, and for i> M-2

and j > N-2, on the other hand, the correction matrix involves out—.boundary
points. Wé must therefore express the quantities associated with the out- |
boundary points in terms of their values inside of the boundary. This can be
done as follows: .

a) OQut-boundary points at the vicinity of the axis of symmetry: Let

j =1 denote 2a axis of symmetry. Along j =0, we have, see Fig. 3.2,

u(O’ 1) =- U.(Z, i) ’
vi0,i) = v(2,1) | (4.11)

q(0, i) = q(2, i)
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b) Out-boundary points along other sides: Equations (4.9%) may
be written for points on the boundary. .The additional u'nknowns at points
outside of the boundary are then expressed in terms of the corresponding
interior quantities using the finite-difference form of the given boundary

conditions.

3.4.3 Boundary Conditions: With the apparatus developed in this

section, all boundary conditions that may be of interest can easily be ex-
pressed in a finite difference form. For example, on a stress-free side

(N + 1,i) , which is initially normal to the Y-direction, we have

Aav — du dx _
5Y P 3x ~%3x -0 '
du _
v =0 .
These equations now become
BN+, i BIN+L, i ror Ar )]
o BNILY Pl D 0 2 X 0 0 -g,m+Ln|[ume,i-1)
0 . 0 0 -1 0 0 0 O 0 a(N. i)
u(N+2, i}
u(N+1, i+l)
v(N+1, i-1)
* , v(N, i)
v(N+2, i)
v(N+1, i+1)
q(N+1, i)
i=1,2,...,M, M+l -
10
/<3
= . o P Pl S == s T i-;‘




For each i, there are two 5uch boundary conditions which can be used to
obtain u(N+2,i) and v(N+2Z, i) in terms of the other quantities* that are
evaluated at the node (N+1,i). Note that, if the components of the surface
tractions are prescribed to be non-zero on the considered boundary, the

right-hand side of the above equation must then be set equal to

1 v Tl(N+1, i)

v TZ(N+1, i)

where VTl(N+1, i) and VTz(N+1, i) are the corresponding equivalent

concentrated incremental forces acting at the node (N+1, i).

Note that we have not incorporated the required correction terms here,
but they must be included after the first estimate of the unknowns at
out-boundary points is established.
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3.5 A Variational Approach

A variational method is being now f:leveloped by the present in-
vestigators, which method can be used effectively to formulate a finite
element approximation for solution of large elastic deformation problems.
We shall give an outline of this method in what follows.

Since for each incremental loading, we are actually dealing with

a nonhomogeneous, anisotropic, linearly elastic problem, it is possible to

formulate this problem in the framework of a variational technique. To re-

tain the effectiveness of the basic approach, however, one must retain the

original Lagrangian formulation.

Consider an equilibrium (deformed) state C of the elastic solid
under surface loads Ti . Let the surface loads be increased by the amount
AT.1 , measured per unit area in C0 , resulting in an incremental deformation

-

u, . The change in the strain energy is

2
3T 3"
AT= u, _+# u, . u, .
axi,a i, o Bxl’aax.s i, j,B
= TR u +&C u, _u + (5.1)
ai i,o «iBj i, j,B ! °
where '

C = __3_2_8__..._ (5.2)
@iB) axi'maxj’B

and where Tl;i is the Piola-Kirchhoff stress tensor in C . The potentijal

energy associated with this inc remental loading then is
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_ _¢ R
"= Iv AT AV '..rS(Ti+ AT;) u; dS '-YV[Tai %,a* ¥ Cqipj %, a %0

R

+...3av - [ (T,
s (2

N,) u; &S - j‘s AT u, dS . (5. 3)

Using Gauss' theorem, and the fact the C is in equilibrium, we reduce

(5.3) to

,,;-H‘v Coisj ui’auj’BdV-_fs AT, g, dS . (5. 4)

It can be shown that if the state C is a stable equilibrium state (13]

. .« p r . . .
that.xs, if v Cd i8] ul,auJ.B

fields which comply with all the geometrical boundary conditions of the

dV is positive-definite for all displacement

problem and are sufficiently smooth, then 7 has an absolute minimum for
the actual displacement field. To develop a finite element approach for
solving plane-strain problems, one may, for exampie, consider a set of

piecewise linear displacement fields, and substituting into (5. 4), minimize

7 to obtain a system of linear equations for the amplitudes of the displace-
ment-components at the nodal points [9]. Note that, in this formulation, all
quantities may be referred to the original undeformed state. Moreover,

Eq. (5.2) shows that (5.4) is valid for elastic materials of all kind. No;te
also that CdiBj cannot be identified w_ith the usual elastic constants; they
are not constants.

For incompressible materials, (5.4) must be modified to read

ﬁfv (30Ch1a;5 " P%4, 1 %5, 11 %, 0%, 8™ T ¥a i, M "rs AT; v, dS , (5.5)
where q is the Lagrangian multiplier, and u, = 0 because of incom-

{ pressibility. With straightforwa=d calculations, it can readily be verified
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that the first variation of (5. 5) would yield the equations of equilibrium

(3.3) and the appropriate boundary conditions provided that T is identified

with (2.17), and q is taken equal to q/p.
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3.6 FEstimate of Plastic Strains in Metal Layer

‘The analysis presented in the preceding sections can be employed
to obtain the stress and strain fields in the ¢ = tomer-metal composite., In
particular, this analysis yields a conservative estimate of the shear stresses
between the metal and elastorner that must be carried by the bond between
them. Since under a repeated loading of the type encountered in expulsion
bladders, the bond between metal and elastomer may be broken, the analysis
provides information for design against such a failure.

In addition to the possible bond-failure, the metal layer may
fail during a cyclic plastic deformation. It is therefore desirable to have
a complete formulation and an analytical technique which would yield directly
not only the stress and strain fields in the elastomer layers, but also the
stress and strain fields in the inner metal sheet. Although attempt is being
made to develop such a2 program, af the present time we shall be content
with a consér\_/ative engineering estimate of plastic strains in the metal .
sheet that can be obtained directly using the knowﬁ stress fields in the
elastomer. _-

. Consider the free-body diagram of the elastic sheet in its unde-
~ formed. initial configuration, Fig. 3.3. In a continued incremental loading,
this metal layér deforms incrementally under the action of surface tractions
transmitted to it across its inter-face with the elastomer. At a given state of
loading, the deformed metal shee£ is in an equilibrium state under a given
set of surface loads TR‘ N = Ti applied on its boundary, where these

a1l o

tractions are conveniently referred to the initial undeformed configuration
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of the metal layer, Fig. 3.3. We notethat, because of the assumption
that the normal tractions are continuous across the metal layer, from Eq.

(3.15b), we have

(TR 4 1R by 2

R(+) rR() )
ax ]ax =0 , (6.1)

where the stresses are viewed positive when they are in the positive direction

of the coordinates. The individual components T?Z and T?l , however, may

R(+)
22

where these tractions are viewed positive

.not be continuous across the metal sheet, that is we may 1;1ave T
4. TR( ) .nd TR(+) 4. TR( )
if they are in the positive direction of the corresponding coordinate axis.
Since the metal layex; is thin, a linear stress distribution across
its thickness appears to be a good approximation, and, therefore, from
the values of T?Z and TZl we can calculate their values at the interior of
A.fhe metal sheet. We must, however, obtain an estimate of the values of 'I‘ 11
and TR

12
Tlfz # T?l because the first Piola-Kirchhoff stress tensor is not

which are not known on the boundary. (Note that although le

=Ty -

symmetric.) To obtain an estimate for T?l , we proceed as follows.

On a section C-C located at a distant ¥ from X =0, there

act a resultant force P and a resultant moment M given, respectively, by

P= j (TR(+) T han+F (6.2)
and
M = j RS S
+j (- TR L 2R (n-x) an- T(L-X) : (6.3)
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where T and F are the tangential and normal loads applied at section
A-A. Now, if we use a linear stress distribution across the metal thickness,

we obtain

R P 12MZ
hh=7t* 2 ' (6-3)
where a new coordinate system 0X,Z is used here. Hence, T?l , Tl;l )

and T?Z are known throughout the metal sheet at each state of loading.
These results can then be used to obtain an estimate for the corresponding
plastic strains as follows.

From Egs. (3.13), we first calculate the Cauchy stress tensor
Tij throughout the metal layer. This then defines the state of stress at a
given state of loading. Using an identical procedure, we calculate the in-
cremental stress-field. ATij that corresponds to an incremental loading.

Then, using the Mises yield condition

_ 32" - _
f==% {TijTij}-c-O , ‘ (6.4)
L 1 ' : . . : :
where Tij Tij 3 Tkk 5ij , and o is the yield stress in tension, we write
T/ ’ '
. . acP =|2 L | AT , (6.5)
ij S E’
where *
o =372 {Ti'j T;J. 1% , AT =372 {z.-;r;j AT;J.}% . (6.6)
and
g’ =40 (6.7)
de

which can be measured as the slope of the stress-plastic strain curve in

simpls tension.

117

ty
LY
LK

|
|
|




' REFERENCES

1. Turner, M. J., Dill, £. 1{., Martin, H. C., and Melosh, R. J.,
"Large Deflection Analysis of Complex Structures Subjected to
Heating and External Loads,'" J. Aero. Science 27 (1960) 97-106.

2. Martin, H. C., '"Derivation of Stiffness Matrices for the
Analysis of Large Deflection and Stability Problems, " Proc.
1st. Conf. on Matrix Methods in Struct. Mech., AFFDL-TR-66-80
(1966) 697-715. .

3. Mallet, R. H., and Marcal, P. V., "Finite Element Analysis of
Nonlinear Structures,'' J. Struct. Div., ASCE 94 (1968) 2801-2106.

4. Marcal, P. V., "Finite-Element Analysis of Combined Problems
of Nonlinear Material and Geometric Behavior, " in Computational
Approaches in Applied Mechanics, ASME Computer Conference
{1969) 133-149.

5. Oden, J. T., "Numerical Formulation of Nonlinear Elasticity
Problems,' J. Struct. Div. ASCE 93 (1967) 235-255.

6. Oden, J. T., and Kubitza, W. K., "Numerical Analysis of
Nonlinear Pneumatic Structures, ' Proc. lst. Int. Cllog. on
Pneumatic Structures, Stuttgat, May 1967. '

7. Becker, E. B., "A Numerical Solution of a Class of Problems
of Finite Elastic Deformations," Ph.D. Thesis, University of
California, Berkeley, Calif., (1966).

8. Felippah, C. A., "Refined Finite Element Analysis of Linear and
Nonlinear Two-Dimensional Structures, " Ph.D. Thesis, Univer-
sity of California, Berkeley, Calif., (1966).

9. Nemat-Nasser, S., and Shatoff, H. D., "A Consistent Numerical
Method for the Solution of Nonlinear Elasticity Problems at
Finite Strains,' ONR Rept. #2, University of California, San

. Diego, January 1970. '

10. Mooney, M., "A Theory of Large Elastic Deformation, " J. Appl.
Phys. 11 (1940), 582.

11. Rivlin, R.S., "Large Elastic Deformations of Isotropic Materials,
1. Fundamental Concepts, ' Phil. Trans. Roy. Soc. (London) (A)
240 (1948) 459-490. -

12, Treloar, L. R. G., The Physics of Rubber Elasticity, Oxford
University Press, 1958.

118




Y(i)

Nh

(1.1)

Mk

X(j)

. Fig. 3,1

19

NS

b

|
L




Fig. 3.2

120




i‘y{

f Xp 1 %p e Z
C
o
]
‘ ' ‘ 4 | ' A
. 2 ' :I. -x
P12 “F
EERTRNERE R
R(-)
R(-) T
1 T2l a2 o Xpax)
X (L-X)
|
C
Fig. 3.3
121




CHAPTER IV

ANALYSIS OF RIB-REINFORCEMENTS

4.1 Introduction

In ChapterlI, the expulsion bladder was assumed to be rein-
forced with circumferential rings. A more general analysis might include
helical or othér types of reinforcements, i.e., reinforcing rods whose
centerlines are tangent ‘to a given curve on the surface of the bladder. In
any event, the differential equations governing the deformation of these
structural elements must be known in order to formulate a bladder stability
analysis. For this purpose, a geometrically nonlinear rod thebry is de-
veloped in this section, a special case of which includes circular rings.
It will suffice to base this theory upon the assumptions of 1) small strain,
2) symmetric cross sections, uniform along the rod length, 3) linearly elastic,
homogeneous, isotropic material, and 4) Bernoulli-Euler bending and St.

Venant free torsion.
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4.2 Geometrical Preliminaries

Nctation

In portions of the subsequent analysis indicial notation
[1] will be employed. Latin indicies range over 1,2, 3; Greek indices

range over 1,2. The summation convention holds in each case.

Reference Curve and Directors

As a reference, let us select the locus of material points
on the cross sectional centroids of the reinforcing rod, which we assume

to be a2 smooth curve € in space. We define C by

r =r(s) (4.1)

where x is the position vector, relative to a fixed origin, of a material
point on C, and s denctes distance along C. In the stress free un-
deformed state, we shall denote this curve by ¢ and the correspbnd'mg
position vector by
o= Zolsg) (4.2)
where g represents distance along c . If the strain ¢ of ¢ is defined by
* 2 2
ds - dso

2
2¢ = ___2__.=ld£/dsol -1 , - (4. 3a)
ds :

then the quantities s, and s are related through

ds = (1+Ze)§ ds0 . : (4. 3b)




To each point of C we now assign three mutually orthogonal
unit vectors {directors) éi(s) , i=1,2,3, as follows: The vector é3(s)

is the unit iangent vector to C, defined by

Ajls) = dr/ds ,
and the vectors éa(s) , =1,2, are orthogonal to ﬁ3 , orthogonal to
each other, and are coincident with the principal axis of the rod cross

section. In a similar manner, a set of directors a, are assigned to
. ~

the curve c . The latter are defined by
isfso) =dr,/dsg '
E‘a(so) = éa(s) in initial state
In view of the definitions of éi v 2y note that
A.+A. . =a.,*a_.=8§..
~i ~] ~1 ~) 1)

where 625 is the Kronecker delta.

~ Differentiation of the Directors

It will be necessary to differentiate the directors A
~

:

i
with respect to s . For this purpose it will be instructive to review a

little elementary differential geometry.

The curvature vector Xy ata point ot C is defined by

dé_,’/ds =Xp

where K is the curvatureof C and p isa unit vector. Since u is
~

~

orthogonal to A, . wecan write
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(4.7)




X [ '-’Ka éa (4. 8)
where }Ca =‘}Cg- éa . Now, since é3 . éa =0, we have
Ay +dA [ds=- A . dA./ds = - A - (Xp) =Ky (4.9)
and therefore
‘5'3 . (déa/ds +Ka£3) =0 . {4.10)
Also, it is evident that
ﬁa . (dﬁa/ds +X, A,) =0 . (4.11) .
Equations (4.10) and (4. 11) imply that
da /ds +X) Ay =1 B8, ' ‘
£ {4.12)
' dA,/ds 3, B85 =1, 8,
In additicn, since »él . éz =0, we have
él . d.f_zlds=-~2' dﬁllds . {4.13)
Define
}C3=§2-d£1/ds=-~l'dé2/ds . . (4.14)
Then, Egs. (4.12) and (4. 14) furnish
fl = -3C3 , £2 =}C3 . (4.15)

In summary, therefore, it has been shown that

dA,/ds =3, A, - Ay .
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da,/ds =- K, A, -K, A, :

dA,/ds =X, A, +XK; A,

Equations (4. 16) arc similar to the well known Frenet-Seret
formulae [ 2 , p. 159] relating the tangent vector A, , the normal or

curvature vector Xy , and the binomial vector v of C as follows:

dé3/d5=3{p, . du/ds =Ty -X A
dz/ds=-1’p ,

where T is the "torsion' of C . If the angle © is introduced through
A, * i =cos € , then él * 4 = sin © and the Frenet-Seret formulae

~ ~

are related to the curvatures SCi by

K1=3-Csin® , 3C2=3Ccos® , 3{3=T+d6/ds

Finally, the physical meaning of the quantities Ki can be

illustrated as foliows: employing the right hand screw rule, let dB.1

denote differential angles of rotation of the directors about the ’éi axes

respectively. Then, an elementary calculation reveals that

. X, =d82/ds , K2=-del/ds , 3C3=d83/ds

(4.16)

(4.17)

(4.18)

(4.19)

o TR ‘i




4.3 Displacement and Strain

Metric Tensor of Undeformed State

We represent the position vector BO of a material

point of the undeformed rod by

where 93 =85 o and 60‘ denote distance along the 24 axes respectively.
Employing (91, 62, 63) as reference coordinates, the base vectors £

and the metric tensor gij =8 ’%j of the undeformed state are

o= 2Ro/28,°2

o
_ i ©0) (0)
53-BR0/393—fg 2_3-!»613{3 i2-62K3 2 ,  (4.21)
g1 =82 =1 » B2"821°0 ’
_ _ (0) - - (0)
813783, = -8, %3+ 8378370, '
(4.22)
2 2
855 =8 +(8,;3N" + (8, 3)) ,

2
g= ey l=0-83x - 0,310

The relations (4.16) were used to derive (4.21). Here the superscript vo

denotes values of the curvatures in the undefor.med state, i.e., they refer

to the curve c¢ .

Displacement Field

A basic assumption regarding the deformation of the rod
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is now introduced: the position vector R of a material point of the de-
formed rod, originally at 50 in the undeformed state, is assumed in

the £orm*
R(68,.0,,0,) = £(85) + 6, A (8;)+ al83) 0(8).8) A5(63)
wherz ¢ denotes St. Venant's warping function and a(93) is given by
1= (1s2er-Bic. - 3cl©)
oz(93) = (1+2¢) "X3 - K3

The quantity a(93) represents twist per unit undeformed length. The

function ¢ satisfies

_éz_(g_+ 12%:0
26, 236,

throughout the cross section G of the rod, and

o

3o . .
n -8 mp. 6,

on the lateral surface (boundary of G). The quantities Dy in (4.24b)
are direction cosines of the external normal n to the lateral surface
(n3 =A0), i.e., n, = (2 . ﬁa).
Under (4.23), the displacement vector U is.
U=R-By=u+8(2,-2 )t a0,
where

u=r--r
~

~ ~o

=
ea are undeformed (Lagrangian) coordinates in (4.23), they are not

convected.
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(4.23Db)

(4.24a)

(4.24b)

(4.252)

(4.25b)




is the displacement of the point of intersection of the directors éa with

the curve C, ea(éa- a ) represents a displacement due to rotation of

«

cross sections, and o o® A3 denotes cross sectional warping due to the
. ~

twist o .

Equations (4.23), (4.25) represent a combination of Bernoulli-

Euler bending and St. Venant torsion. The character of this displacement

field is illustrated in Fig. 4.1.

Metric Tensor of Deformed State

With reference to the undeformed coordinates (61, 92. 93),
the base vectors gi = 65/8 81 of the deformed state are, from Eqs. (4.23),

(4.4), (4.16), (4.3b),

-3
(142¢)72 G, = (@ pX) - X3 8,) &, + (@, +X;3 8;) 2,

+01-8,% -8,%,+ (+2e)¥p o' A, . (4.26)

where ( )/ =d()/d@, =4d( }/ds, .
* The metric tensor Gij of the deformed state can be computed

from (4. 26) through

G.=G, -G - - (4.27)

Strain

If Green's strain tensor, y.. , is employed as a measure
le y

‘of deformation, ‘we have
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.=~ G,. - 8.. .28
i) Gu .giJ (4 )

2y
where the components of yij are referred to the coordinates (81. 92. 63).
In portions of the subsequent discussion, however, the analysis can be
facilitated by referring the components of the'strain tensor to local rect-
angular cartesian coordinates Yl’ YZ’ Y3 along él’?ﬁZ’é3 respectively

(note Ya = ea). Denoting these new components by e * we have

r L8
e = Yig aei B_GJ_ (4.29)
J Y’ Yy
Now, from the geometrical relation
dR = G, 4’ = A, 4Y’ (4.30)
we obtain i
28 _-Gl.a, (4.31)
where the contravariant base vectors Sl are defined in terms of the co-
variant base vectors Si by
t_
Ge G =G x Gg : (4.32)

The quantity e in (4.32) is the permutation symbol, and G denotes the

rst
determinant of the metric tensor, i.e., G = }Gij | . The transformation
(4:31) was obtained from (4.30) by an inner product of both sides of (4. 30)
with gj , and noting that gi . Qj = 6; . |

Following considerable algebraic manipulation, the non-zero

components of the strain tensor eij can be obtained, through use of Egs.

(4.26), (4.28), (4.29), (4.31), (4. 32), in the following form:
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2/G e, =0 (G 3 ~—- to¥X, - 6,) ,
2/G ey = oG 2t oK, +6))
23 36, P2 T Y '
(4. 33a)
(0) Y%
Gejq =Ge+/Gao' (p+/Ga3'C [ 92-'—9—-9]
2
- 8, AY, /G- 8, A%, -3 (6, &%, + 8, A%,)
‘where
K;-: 1-61K1-62K2 * .
(4. 33b)
- (0)
A"Ci —}Ci -‘Ki
in the derivation of (4.33), it was assumed that ¢, ba, bA‘_l-C3 .
bZ ol . 7y i <<l , where b = max (91, 92); this follows from the hypothesis

that e. i <<l . Consequently, terms of order ¢, ba, bza' bA‘S-C3 were

neglected compared to unity in the general expressions for eij , and only

linear terms in «, ', A'PC3 were retained.

1f the rod is "thin,'" i.e., if b'}Ca <<1, then Ga 1, and Eqgs.

(4. 33a) can be further simplified as follows:

_ 30
2e13—a(a—9-;+<p‘}€1-92)
2e23=a( +¢1c +8,) ' | (4. 34)
L (0) Bo 30
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A"Ci , a,¢ -Displacement Relations

To complete the geometric description of our rod, it will
be necessary to express A}CB , @, € interms of suitable components of
the displacement vector. Expressions for these quantities which are valid
for arbitrarily large displacements are very complex. We shall therefore
restrict the discussion to a small strain-moderate rotation theory. The
latter is compatible with the approximations inherent in the' shallow-shell
theory employed in Chapter II.

. Consider ¢ first. Suppose we represent the position vector

£(8,) by
(8,) = 14(65) + u;(85) 2,(85) . . (4.35)
Then, with use of (4.16), we obtain

£'(83) =2 (ug - X #5% ug) + 2,9 30,

+3((20) ug) +2,(1 -’.}C(lo) uy - Kf,_o) u, + u;) . (4.36)

Equations (4. 36) and (4. 3a) yield

o +_0) (0) 2 . .t _l0)
. 142¢ = (1 +u3 Kl u - .'!-CZ uz) + (u1 - K3 u,
0) 2 0 0 2
+3c(l ug)” + (ué +}c(3) g +}cf,_ ) u3) (4.37)
If we define
' (0) (0)
R S N S
cos (033 = »

(1+2¢)°

132




’ (0) (0)
u 'K3 u.z-l-'!C1 u3

- sinBgyy = 1 o , (4.38a)
sins,, - ué +3C(30) uli'*K(ZO) ug '
(142¢)
then (4.37) becomes simply
cos2 1,')33 + sin2 531 t sinz. _832‘= 1 . (4.38b)
Now, the tangent vector ’é3 to C is giv.en by
Ay =‘ dr /ds = (1+ze')'é r’ . (4.39)
Therefore Eqs. (4.36), (4. 38). imply that
| (4. 40)

Ay =-sin83 3 -8in85 2, T cOSP3323

With reference to Fig. 4.2, let us introduce the angles ¢, 4;1 s

‘bz by
drra, A3-2;, o
-tand, TaT o TR .
(4.41)
Az 2, : .

tan P, = oo—=t
T2 A3t 3,

L]

These angles represent rotations of a differential element dr . With the

aid of (4.41), (4.37) can be rewritten as

1 +2¢= (1+e)2(1+tanZ wl + tan2 wz) (4. 42)
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where .

= ! (0) (0)
€ =ug- }Cl uy - '.}CZ u, . (4. 43)
Let us now simplify (4.42) under the restriction that

1) e<<1 ) 2) :pz <<1 . (4. 44)
According to the definition of ¢,

%

cos ¢ = cos ;p33 = (1+e) (142¢)” (4. 45)
Expanding the radical of (4.45) ina binomial series and retaining only
first order terms in ¢ , we have
2
c-exp /2 . . (4. 46)

Therefore e differs from ¢ only by terms of O((pz) and e can be
neglected compared to unity. Thus, (4.42) can be simplified under (4. 44)
to

eme t+%tan b tE tan’ Py . (4.47)

Noting that (4.44) implies cos z[,:33 ~ 1, (4.47) can thus be written in terms

of the displacements u, as

€ (u'é -K(lo) ay -}C.(,_o) uz) + % (u.'2 +3{(0) uy +}C(20) u3)2 + 3 (ui -J-Cgo) u,

3
) 0) 2
+35'C(1 u3) (4. 48)
Consider now the curvature-displacement relations. Let
Ayt aycosyy '
(4.49)

cos¢ij=cos (17/2+aij)=-sina'ij , i#]j
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A . can be related by

~1

Then the directors r%i ,

Ap=cosy) a-sinBa,-sinBy3a, '
A, =-sin9, a, +cos by, a,-sinB,3 2, ' (4. 50)
Ay=-sinBy a)-sindyy 2y tcosd33 2,

The quantities 531 ) 832 , zp33 are given in terms of displacements u
through (4. 38). The remaining unknowns in (4.50), namely 312 , 621 ,
B3 823 IR 4’22 , can be determined as a function of the four quantities

*
u. i=1,2,3 and 3,, through application of the constraints: 4, * ﬁl

= ,éz . -éZ =1 and él X éz = é3 . With use of (4.50), these furnish
cosng“+sin2512+sinzsl3 =1 ,
cosz “bZ.Z + éinz 851 + sin2 Bo3 = I,
- sin831 = sin‘}12 sin 823 + sin 813 cos ‘-bZ?. ., (4.51)
- sins32=sin621 sing,, ¥ sin 8,4 cos b11 ’

cos 4')33 = cos P, cos Yoo - Sin B, sinB,,
Equations (4. 51) constitute five ejuations for the five unknowns 8,4, 813 )

823 ¥11 ¥22 -
In addition to the assumption QZ = zp§3 << 1 of the preceding

paragraphs, let us assume that all angles are moderately small (squares

* The remaining constraint Aj -« 85 = 1 is already satisfied by (4. 38b).

135




of the angles are small compared to unity). Then, an expansion of all

trigonometric terms in (4. £.), and a subsequent neglect of squares of

angles in comparison to unity, yields
33~ Byp 0 Ba3mcfy o PByymtB o
cos Yy ~ 1, cospy,ml
.Thus, Egs. (4‘. 50) can be written
Apm2)-8)222%85 23
Apm tBp12) T2y tB3p 23
Aam-B8312)-83222 %23

The curvatures 'Ki can now be computed in terms of uy

and 512 from (4.53) as follows:

. -4 ‘
%, = (1127 %a - A,

- - /
Ky = (142¢)7° A, - A)

which implies

(0)
Afbcl P e&Cl tw,

_ (0)

(s ] u’s
where
- =q’ (0) (0)
@) 5855 tH3 7 84; - 8% '
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(4.53)
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(4. 54b)




(0)

—at (0)
- wy 83 187G - 932K ' (4. 54¢)

a! (0) (0)
wg ZByp t Ky Bap -7 By ‘

Equations (4. 34), (4.48), (4.54) furnish a complete geometrical
description of the rod under the restriction that squares of all angles are

small compared to unity.
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4.4 Stress Resultants and Constitutive Relations

Let the components of the stress tensor cylJ be referred to the
coordinates (Yl' YZ’ Y3). Since the latter are rectangular cartesian, the
position of the indices is immaterial, and we shall simply write °ij . For

a linear elastic, isotropic and homogeneous material, the stress tensor is

given in terms of the strain tensor €5 by

= 1tv v
¢ = F %" E %kk O (4.55)

where E is Young's modulus and v is Poisson's ratio.
We now introduce an approximation: we assume that the stresses

%11 and O, <an be neglected in comparison to 033 in (4.55). As a re-

sult, the following relations are obtained:

O33 ~ E €33 » O3, = 2G €a3q (4.56)

where G = E/2(1+y) is the shear modulus.

Let us now define the quantities Ni , Mi by

_ 1,02 -
. _ Ni-j‘j‘caﬁde e , i=123
- 1 a2 ‘
MI-IJ‘G 8, 035 d6" de ,
, (4.57)
= 1 .2
M, =[] (0,,8, -0y 68,)de’ ag?
370092717 % %2
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According to (4.57), Ni represent resultant forces on the rod cross

g

section,

and Mi are first moments of the stress field.

Sutstitution of (4.56) into (4.57), with use of (4.34), furnishes

the following "constitutive" relations between. N3 ,

Mi. Va.e.A'&Ce:

N3 = EG ¢ ’
Ml S - EIZZ A?‘CZ F)
(4.58a)
M, = Elu A’S'(“‘1 4 '
M3 = GJo ,
where G = rod cross sectional area,
- _ 2 .1 42 .
Iy j’j’a 6, 48" dé , (no sum in @)
o {4. 58b)
- X0 3o, g2 2 1 .,..2
3=[[ (8, 50 -06,3p *+6 +6;1d0 38
G 2 1
In the derivation of (4.58), the rod cross section was assumed to be
symmetric about both principal axes.
It should be noted that the second and third of Eqs. (4.58a) can
be written in the alternate form (see 4. 54b)
. M, = El, w > M, = El, 0, (4. 59)
This can be seen as follows: If the expressions for A'&Ca are substituted
into Eq.(4. 34) for €33 then the resulting terms e}Cg)) ea (no sum on @)
can be grouped with ¢ . However, the thin rod assumption implies
‘ that }C‘(xo) 60; << 1 (no sum inq), and therefore the latter can be neglected
139
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compared to unity. The result is (4.59). -
Finally, let us define exte rnal resultant force and moment

n .
vectors :.;, m in terms of the traction vector T on the lateral surface

of the cable by

]

n
£=% Td m=% (6,4, xT)d (4.60)

b b

where b denotes the boundary of the rod cross section.

#4y
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4.5 Equilibrium Equations

According to our averaging procedure, an element ds of the
cable is subjected to resultant forces and moments as indicated in Fig. 4. 3.
We now require that these force and moment fields satisfy equilibrium,

which yields

B}S/Bs+£=0 .
ax;g/as +m + (9‘3 xN) =0 . (4.61)

If the vectors § , 1\’@ , i , m are decomposed into components Ni s Mi ,
fi ,'rni along the Ai axes, respectively, Eqs. (4.61) become (with use
of (4.16))

le/ds - K, N, +%, N, + fl =

)
o
-

L dN,/ds +%3 N) +3¢, Ny + £, (4. 62a)

L
o

dN3/ds-'§ClN1-'}C2N2+f3=O B
dMllds - Ky M, +¥,; M, - N, +m; = 0 , (4. 62b)
dMZ/ds +}C3M1+}CZM3+N1+mZ=o. .

dM3/ds-}C1M1-K2M2+m3=-O

Since -
d( )/ds = (1'+A25)'id( )/d93

and ¢<< 1 by assumption, all derivatives with respect to s in (4.17)
‘a3

can be replaced with derivatives with respect to 8
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4.¢ Summary of Equations

Equations (4. 62), (4. 58), (4.54b), (4.48) are fourteen equations
for the fourteen unknowns: u,, Ni s Mi v Wi Byy e € They are the

basic rod differential equations. ‘We summarize them below:

Eq uilibrium

Nj -3, N, +%) Ny +f =0 ,
Né+3c3N1+}czN3%fz=o ,
N%-}CINI-KZNZ+'f3=0 ,
Mi-&C3M2+3{1M3-N2+m1=0 ,
M, +%, Ml‘ncz M, +N; +m, =0 ,

¢ =
M3-}C1M1-K2Mz+m3-0.

Constitutive
N3=E4g , M, = EL,w
M, = Elu Wy s M, = GJ Wy
Strain e-displ.
. - (e - 5642 a0, -3 0 + (5%9)2 + (E%—l)z
Geometric |

—a’ 480} (0)
W B3, tHyT 8y T

821 ’
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(4. 63)

(4. 64)




i’-.\‘

- W =83 -5y 85, 'K(so) LY
w3 * 921" S +K(20) B3y

-B31 ¢ ui - 'K(30) uy +3'C(10) ug

VI
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(4. 65a)

(4. 65b)




4.7 Equations for Rings

Let us now specialize the results of the preceeding sections
to rods that are circular rings in the undeformed state. Accordingly,

we must set

S VL R L (4. 66)

in Eqgs. (4.62), (4.64), (4. 65), where Ty denotes the ring radius in the
undeformed configuration. The coordinate system selected is illustrated

in Fig.

Prebuckled Configuration

Consider the prebuckled state. Here all quantities are

independent of 63 {or 59 ), and

u, =0 » Uy F constant , £3 =0 R
N3 = constant , 521 = constant , 532 = 531 =0 .
W, =w, =0 w =-}C(°)e =8,, T {(4.67)
2 3 ? 1 1 V21 21 70 ’ )
‘ I, =0 xl=r tu,, K, =0
. 2 ’ 1 0 1’ °°3 ’
(0) -

€=- v =u/r
Equations (4. 63) and (4. 67) imply th.at

EAnu g,, EI
N, = 1 M. =2l 22
o

(4. 68)
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With usc of Eqs. (4.67) and (4. 68) the following additional

relations are obtained from (4. 62): *
Kl M1 = &3 = constant ,
N1 =-m, = constant ,
N2 =-m, = constant R (4. 69)
‘.'rCl N3 = - fl = constant ,
£, =N, = 0

The dependent variables of the prebuckled state can therefore
be written in terms of the assumed known functions f1 » My, My, m,

as follows:

u

_ 1
N3-f1r0(1+—r;)saflro s
2
2 N3%o _Tofy
1 EA EA '
iy
Ml—-m3ru(1+r—o)g—m3ro ,
2
8 =fﬁ}_=-m3r° . ' (4.70)
¥21 EIZZ EIZZ
Nl=-m2 , NZ=-m1 , M2=M3=0 ,
ug =0 , u, =constant , €=u1/ro y Wy Fwy =0,

T e Tiar e T e L




The loads fl » my and the constant u, in (4.70) are determined by

proper matching of ring and shell displacements and forces.

Perturbation Equations

The stability analysis of Chapterll requires differential

equations describing small ring deformatious about the prebuckled con-

figuration. These can be derived by perturbing the prebuckled variables

as follows:
(uiv Nir Mi’ wi"’BZI) = (uir Ni’ Mi' wi' €, BZI)

% % %
+(u.N M AN ,621) (4.71)

where (7) denotes prebuckled state and ( )* denote perturbat:ions.
Substitution of (4.71) into Eqs. (4.62), (4.63), (4.64), {4.65), with use
of (4.170), yields:,

Eguilibrium w!

N1 '}C3N—N/r +'}C1N3+f =0 .
'N*' TR, 4G N, + 6,

2 TH; Ny +3; Ny '

%! * - - * :

N3 +N1/ro-‘.‘C1N1-’K‘2N2+£3-0 ,

. . (4.72)

*! * * *

M, -M3/r0—N2+m1—0 .

%’ - — *

MZ +}C3M1+I“Il+m2-0 ,

%! * L %

M3 +M1/r0-1{1 Ml+m3-0
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LR

u*
* . %*? 1
Na-EA(U3+r°) »
7] 8
21
My = Elpplog - 7 ) .
x’
& " 63
Mp = Ely (o) - 55 )
*l
* ? uz
My= GI(82 - =, )

This completes our formulation of the relevant differentiai

equations governing the reinforcing rods.
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Fig. 4.1
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Fig. 4.3
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